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Abstract

This article studies a principal-agent problem where the only commitment for the uninformed principal is
to restrict the set of decisions she makes following a report by the informed agent. We show that an ex ante
optimal equilibrium for the principal corresponds to a finite partition of the state space, and each retained
decision is ex post suboptimal for the principal, biased toward the agent’s preference. Generally an optimal
equilibrium does not maximize the number of decisions the principal can credibly retain. Compared to no
commitment, limited authority improves the quality of communication from the agent. As a result, it can
give the principal a higher expected payoff than delegating the decision to the agent.
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1. Introduction

A principal needs to elicit information from an agent in order to make decisions, but their
inherent conflict of interest makes truthful communication difficult. When the principal cannot
credibly give up her authority to make the final decision, the seminal article by Crawford and
Sobel [11] (hereafter CS) shows that the principal’s decisions suffer from the agent’s incentive to
distort his information in favor of his bias. When the principal can credibly delegate her decision-
making authority, the agent uses his information efficiently but his decision is biased. The reality,
however, often lies somewhere in between these two extremes: the principal may credibly give
up some, but not all, aspects of her decision-making authority.

This article presents such a model of limited authority: ex ante, the principal can credibly rule
out certain decisions as infeasible; but for the remaining decisions, she cannot commit to any
particular decision rule ex post such as adopting the agent’s recommendation without change.
Real life examples of this type of limited authority abound. For instance, consider a typical
university tenure system. The university (the principal) needs to decide on individual tenure cases
based on recommendations from the department (the agent), whose interests are not perfectly
aligned with those of the university. Despite the many possible decisions the university can make,
such as increasing the pay without tenure or deferring the decision until a later date, the university
is committed to only two decisions: up or out at the end of a probationary period. In the absence
of an explicit tenure standard, the university is not committed to approving the department’s
decision. Our model offers an explanation of why the up-or-out rule is optimal in this limited
authority environment.

Under limited authority, the principal needs to decide ex ante how much authority to retain
ex post. On one hand, by retaining more decisions the principal can make better use of the
agent’s reported information. On the other hand, more retained decisions create a bigger credi-
bility problem: the information content of the report is lower because the agent anticipates the
principal’s incentive to exploit it. We characterize the optimal limited authority using the same
general framework as CS, where both the agent and the principal have payoff functions that are
strictly concave in decision; both prefer a higher decision when the state is higher; and the agent
has an upward bias in decision relative to the principal. We show that under the optimal limited
authority, finitely many decisions are retained. The agent partitions the state space and makes a
recommendation from the set of retained decisions for each partition element, and the principal
always follows his recommendation.

The principal can never improve her expected payoff through randomization even though she
only chooses from finitely many decisions. There is a general intuition behind this result. In a
partitional equilibrium, when the agent has an upward bias, putting a marginally greater weight
on the highest decision in any decision lottery makes the agent recommend the lottery for a set of
higher states. This change does not affect the principal’s credibility since the highest decision is
used in the original lottery. But the principal benefits directly because, initially indifferent among
the decisions in the lottery for a set of lower states, she strictly prefers the highest decision for
the set of higher states. She also benefits indirectly because the decisions after the change are
on average better aligned with the true state. As a result, if the principal uses a lottery in equi-
librium, she is better off gradually shifting the weight from lower decisions to higher decisions
in the lottery to induce this better alignment of states and decisions. This process continues un-
til she uses only the highest decision—which remains an equilibrium—and receives a higher
payoff.
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A similar argument explains why the principal is strictly better off under the optimal limited
authority than in any CS equilibrium. Starting from an informative CS equilibrium, by marginally
increasing any decision, the principal induces the agent to make the recommendation for a set
of higher states. Because all decisions in CS equilibrium are ex post optimal, this marginally
higher decision remains credible and has no direct impact on the principal’s payoff. She benefits
indirectly, however, because this higher decision is better aligned with the true state.

To better understand the tradeoff for the principal under limited authority, in particular the
properties of the retained decisions, we turn to the example with a uniformly distributed state
and convex, symmetric loss functions, a slight generalization of the uniform-quadratic example
commonly used in the literature. We fully characterize the principal’s optimal limited authority
in this case for any fixed number of retained decisions. In the optimal limited authority, all the
retained decisions are above the principal’s ex post optimal decisions—shifted in the direction of
the agent’s bias—given that she learns the partitional elements. Moreover, retained decisions are
more evenly distributed under the optimal limited authority than the induced decisions in a CS
equilibrium. Intuitively, the principal restricts the set of decisions she can choose from, which
reduces the agent’s incentive to distort. This increases the possible number of decisions that can
be credibly retained, and decreases the distance between them.

A surprising feature of our optimal limited authority model is that the principal may choose
not to maximize the number of decisions that she can credibly use, contrary to the predictions
of both the cheap talk and delegation models. Instead, the principal must trade off the number
of decisions she can use with the placement of these decisions. On one hand, if the agent be-
lieves that the principal simply rubber-stamps any recommendation, then adding a decision that
is rarely recommended by the agent barely helps the principal. On the other hand, adding a deci-
sion that is close to another retained decision exacerbates the principal’s credibility problem so
that it can only be addressed by altering the placements of the decisions. If too many decisions
are retained, the placement can become so extreme that some decisions are used with almost
zero probability; and the actually used ones are, on average, less aligned with the true state than
decisions that are optimally placed on their own. The ensuing reduction in the quality of decision-
making outweighs the gain from the increased number of decisions, making the principal worse
off. Consequently, the principal may prefer using a smaller number of decisions under limited
authority.

The principal’s expected payoff under optimal limited authority is higher than under no com-
mitment but necessarily lower than under full commitment of the principal. Our main welfare
comparisons, however, are between the two environments with limited commitment power of the
principal: optimal limited authority and full delegation, under which the principal takes an arms-
length approach and simply lets the agent decide. Dessein [12] shows that the principal prefers
full delegation to any informative cheap talk equilibrium when the state is uniformly distributed.
This is because communication becomes increasingly noisy as the state increases, and thus the
loss of information under communication outweighs the loss of control under full delegation.
We show that limited authority reduces the agent’s incentives to distort, and hence the loss of
information under communication. As a result, the principal’s expected payoff is of the same
magnitude as under full delegation when the bias is arbitrarily small and the number of retained
decisions is arbitrarily great, and can be strictly higher when the bias is larger and more than
one decision is retained. Moreover, for any value of the bias, limited authority performs better
than full delegation if the principal is close to being risk neutral. This happens because a less
risk-averse principal cares less about the residual loss of information under limited authority and
more about the loss of control under full delegation.
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This article is directly related to the literature on delegation initiated by Holmstrom [19], who
shows that the optimal outcome under full commitment of the principal is achieved by restricting
the set of decisions and delegating decision-making authority to the agent. Our article analyzes
the environment in which the principal cannot delegate authority to the agent, but can restrict
the set of decisions. Closely related are Dessein [12] and Marino [29], who study the optimal
delegation problem where the principal can veto the agent’s decision and replace it with some
default decision; and Mylovanov [33], who instead assumes that the principal can choose the
default decision ex ante. Less related to our work, Milgrom and Roberts [31] and Szalay [34] an-
alyze how restricting the set of decisions affects influence activities and information acquisition
respectively. Sections 2.3 and 5.3 discuss the related literature in greater detail.

To proceed, Section 2 sets up the limited authority model by adding to the CS model a first
move in which the principal chooses the set of retained decisions. Section 2.3 provides more mo-
tivations for the limited authority assumption. Section 3 derives general properties of the optimal
limited authority by characterizing it as a solution to a constrained maximization problem. Sec-
tion 4 provides full characterization of the example with a uniformly distributed state and convex
loss functions of both the principal and the agent. Section 5 compares the principal’s welfare
under optimal limited authority and other organizational forms. Section 6 discusses extensions
of the model. All proofs can be found in Appendix A.

2. The model

2.1. Setup

This article analyzes the CS model with one modification. In CS the set of decisions is the real
line while we assume that, ex ante, the principal can credibly restrict the set of decisions from
which she can choose ex post. The model specified in this section is called a model of limited
authority throughout the article.

Formally, there is an informed agent A (he) and an uninformed principal P (she). Payoffs of
A and P , denoted by uA(y, θ) and uP (y, θ), are both functions of the decision y and the state of
the world θ . The timing of the game is as follows:

1. P chooses a decision set Y , a compact subset of the real line.
2. A observes Y and privately learns θ , drawn from the interval (0,1] according to a positive

probability density function f (θ).
3. A sends a cheap talk message m from the interval [0,1].
4. P receives m and makes a decision y ∈ Y .

All aspects of the game except for the true state are common knowledge. We make the CS
assumptions on functions uA(y, θ) and uP (y, θ), which are maintained throughout the arti-
cle:

Assumption 1. There exists a function u and a scalar b > 0 such that uA(y, θ) = u(y, θ, b) and
uP (y, θ) = u(y, θ,0). Moreover,

1. u is twice continuously differentiable in all variables.
2. uyy(y, θ,β) < 0 for all y ∈R, θ ∈ [0,1], and β ∈ [0, b].
3. uy(y(θ,β), θ,β) = 0 for some function y(θ,β), and for all θ ∈ [0,1] and β ∈ [0, b].
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4. uyθ (y, θ,β) > 0 for all y ∈ R, θ ∈ [0,1], and β ∈ [0, b].
5. uyβ(y, θ,β) > 0 for all y ∈ R, θ ∈ [0,1], and β ∈ [0, b].

Parts 2 and 3 imply that both A and P ’s preferences are single-peaked. Parts 1–3 together
imply that yi(θ) ≡ arg maxy∈R ui(y, θ) is well defined and continuous in θ for all θ ∈ [0,1] and
i = A,P . Part 4 is a sorting condition, which ensures that both yA(θ) and yP (θ) are increasing
in θ for all θ ∈ [0,1]. Finally, part 5 guarantees that yP (θ) < yA(θ) for all θ ∈ [0,1].

This game turns out be equivalent to the following delegation game. First, P chooses a dele-
gation set Y , and then A chooses some y from Y , which P can approve or change to some other ỹ

in Y . The only formal difference is that in the delegation game A makes a recommendation y

from Y , instead of sending a cheap talk message m from [0,1]. The reduction in A’s strategy
space turns out to be immaterial.1 Observe that in both games, P cannot commit to a decision
rule over Y contingent on the message or recommendation from A. Rather, she is free to choose
any decision in Y ex post.

2.2. Solution concept and definitions

The solution concept we use is Perfect Bayesian Equilibria (hereafter PBE). A PBE is P ’s
choice of Y , A’s report strategy σ : 2R×(0,1] → �[0,1], P ’s decision strategy ρ : 2R×[0,1] →
�Ỹ , and P ’s belief p : 2R × [0,1] → �(0,1], such that strategies are optimal given the players’
beliefs, and beliefs are derived from Bayes’ rule whenever possible.2 Formally, the equilibrium
conditions are

(i) Y ∈ arg max
Ỹ⊂R

∫
Ỹ×(0,1]×[0,1]

uP (y, θ)ρ(y|Ỹ ,m)σ (m|Ỹ , θ)f (θ) dy dθ dm;

(ii) for all Ỹ ⊂ R, for all θ , and for m̃ in the support of σ(·|Ỹ , θ),

m̃ ∈ arg max
m∈[0,1]

∫
Ỹ

uA(y, θ)ρ(y|Ỹ ,m)dy;

(iii) for all Ỹ ⊂ R, for all m ∈ [0,1], and for any ỹ in the support of ρ(·|Ỹ ,m),

ỹ ∈ arg max
y∈Ỹ

1∫
0

uP (y, θ)p(θ |Ỹ ,m)dθ; and

(iv) for all Ỹ ⊂ R, for all θ , and for all m in the support of σ(·|Ỹ , θ̃ ) for some θ̃ ,

p(θ |Ỹ ,m) = σ(m|Ỹ , θ)f (θ)∫ 1
0 σ(m|Ỹ , θ̃ )f (θ̃)dθ̃

.

1 Formally established as part of the proof of Theorem 1 in the next section, this claim is obviously true if we restrict
the attention to equilibria where P uses a pure strategy on the equilibrium path. The proof of Theorem 1 establishes the
claim allowing for the possibility of random decisions by P .

2 A technical issue arises with the existence of the conditional distribution function, p(θ |Y,m), which can be bypassed
using the notion of distributional strategies (see Milgrom and Weber [32]) and Theorem 33.3 of Billingsley [7].
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We adopt the following definitions. The decision y is induced by θ (or equivalently θ in-
duces y) in a PBE if on the equilibrium path y is chosen by P with positive probability when the
state is θ in this PBE, or∫

{m: ρ(y|Y,m)>0}
σ(m|Y, θ) dm > 0.

The decision y is induced in a PBE if y is induced in at least one state. A PBE is informative if
there are at least two induced decisions, and uninformative otherwise. The uninformative decision
yP is defined as yP ≡ arg maxy∈R

∫ 1
0 uP (y, θ)f (θ) dθ . Finally, a PBE is a partition equilibrium

({θi}ni=0, {yi}ni=1) if {θi}ni=0 is a partition of (0,1], and {yi}ni=1 = Y is a set of induced decisions
where

0 = θ0 < θ1 < · · · < θn = 1,

y1 < · · · < yn, (1)

such that any θ ∈ (θi−1, θi] induces decision yi for all i = 1, . . . , n. Condition (1) is called the
partition condition. Clearly, a partition equilibrium can be supported as a PBE of the delegation
game where the delegation set Y chosen by P on the equilibrium path has the following proper-
ties. First, it is minimal, in that each decision y ∈ Y is induced; and second, it is veto-free, in that
P chooses the same y chosen by A.

Two remarks are in order. First, all CS equilibria can be supported as a PBE in this framework.
Indeed, consider any CS equilibrium. Let P choose all the decisions induced in this CS equilib-
rium. Because all these equilibrium decisions are incentive compatible for A and ex post optimal
for P , neither player has an incentive to deviate. If P chooses a decision set different from those
induced in the CS equilibrium, then A sends uninformative messages; and thus P makes the
best decision in her chosen decision set based on her prior belief. Note that this observation also
implies that a PBE always exists.

Second, similar to the CS model, for each PBE there exists an outcome-equivalent PBE in
which all messages in [0,1] are sent on the equilibrium path. Therefore, we cannot refine the
set of PBE using standard equilibrium refinements such as those of Cho and Kreps [10] which
restrict out-of-equilibrium beliefs.3 This article mostly focuses on PBE that maximizes P ’s ex-
pected payoff, which we refer to as the optimal PBE. Such a refinement is natural if P not only
chooses Y at the first stage, but also announces the outcome she plans to implement with the
chosen decision set Y .

2.3. Discussion of the model

We model a specific form of limited commitment: ex ante the principal can credibly restrict
the set of decisions available to her ex post, but she cannot commit to any decision rule. We now
elaborate on the settings in which this assumption is reasonable.

Our limited authority model describes a contracting environment in which the authority to
make final (irreversible) decisions resides with the principal, but only these final decisions are

3 Some refinements for cheap talk games have been proposed in the literature but they do not generally select a unique
equilibrium. A notable exception is due to Chen et al. [9], which selects the most informative equilibrium under some
regularity conditions.
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verifiable. The main innovation is to study a more primitive contracting environment than the
full-commitment framework initiated by Holmstrom [19], while at the same time demonstrate
what ‘simple’ contracts can achieve relative to the no-contracting, cheap talk framework of CS.
In particular, in this model neither communication from the agent to the principal, such as reports
on his information or recommendations to the principal, nor decision rights is verifiable.4 As in
the incomplete contract literature initiated by Grossman and Hart [15] and Hart and Moore [16],
communication and decision rights may be observable but not verifiable for various reasons. For
example, it may be prohibitively costly for the agent to present physical evidence of his com-
munication with the principal in the court. Similarly, to delegate formal authority to the agent,
the principal may need to sell relevant productive assets to the agent, which may be impractical
because the same assets are used by the principal for other purposes.

Our limited authority model is thus applicable to environments with this type of restriction
on contractibility.5 In particular, our model sheds light on why some organizations have cer-
tain institutional constraints such as the tenure example mentioned in the introduction. Similarly,
organizations may choose to impose technological constraints. For instance, in many organiza-
tions, managers make decisions using system-wide software packages, such as SAP ERP. This
software is typically adjusted to the specific needs of each organization so that certain decisions
are made unavailable, such as trading of some products at certain prices in a financial com-
pany.

3. General analysis

In this section we provide a general analysis of the optimal PBE in our limited authority
model. We start by characterizing the optimal PBE as a solution to a constrained maximization
problem in Theorem 1. This is a useful result that we exploit further in the uniform-convex loss
setup in Section 4 to completely characterize the optimal PBE. Here we use it to establish the
main result of the section, Proposition 1, that the optimal PBE strictly improves P ’s welfare
relative to the most informative equilibrium of CS. Under further assumptions on the payoff
functions uA and uP , Proposition 2 provides a tight upper bound on A’s bias parameter b for P

to benefit from limited authority relative to the CS model.
Our first result establishes the existence of optimal PBE under limited authority and charac-

terizes its basic properties. In particular, it shows that the optimal PBE is a partition equilibrium
with a finite number of induced decisions.

Theorem 1. An optimal PBE exists and is a partition equilibrium with a finite number of ele-
ments. Moreover, among all partition equilibria ({θi}ni=0, {yi}ni=1) with a finite n, it maximizes∑n

i=1

∫ θi

θi−1
uP (yi, θ)f (θ) dθ subject to, for each i = 2, . . . , n,

4 Allowing reports or recommendations by the agent to be verifiable would of course turn our model into an exercise
in mechanism design without transfers; likewise, allowing the decision rights to be contractible would change our model
into an optimal delegation problem. Both these problems have been extensively studied in the literature; see for example
the more recent works by Kovac and Mylovanov [25] and Alonso and Matouschek [3].

5 Hart and Moore [17] impose a similar contractibility assumption. They assume that ex ante the parties can restrict
the set of outcomes over which they bargain ex post. However, the parties cannot commit to any specific mechanism
according to which the outcome from this restricted set is chosen ex post. Also, Hermalin et al. [18] propose a similar
approach to model situations in which a contract has ambiguous provisions. That is, each contingency in a contract is
associated with a set of outcomes from which the final outcome is chosen. In this context, the imperfect commitment
assumption requires that the same set of possible outcomes should be associated with each contingency.
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uA(yi, θi−1) = uA(yi−1, θi−1), (2)
θi∫

θi−1

uP (yi, θ)f (θ) dθ �
θi∫

θi−1

uP (yi−1, θ)f (θ) dθ. (3)

Because P can freely choose any decision in her pre-specified decision set Y , a useful starting
point is to invoke a revelation-principle type of argument to simplify the characterization of the
decision set that P may choose in a PBE. We exploit the assumptions on the payoff functions uA

and uP to show that any PBE can be supported as one in the delegation game, even though P

may randomize over Y on and off the equilibrium path. This implies that we can restrict attention
to PBE’s in which P ’s equilibrium decision set Y is minimal and veto-free, the latter properly
defined to allow randomization by P . That is, P does not include any decision that she never uses
and more importantly, she always follows the recommendation by A, including recommendations
for a randomized decision.

The problem can still be complicated because of the lack of structure in terms of possible
deviations of P : she can deviate to any mixed strategy over the set Y . To reduce the number of
incentive constraints of P , we first show that any PBE has a partitional structure with a finite
number of elements.6 Next, we note that P may have incentives to deviate only to the decisions
adjacent to A’s recommendation because P ’s payoff function is strictly concave. More interest-
ingly, in any PBE in which P does not randomize, local downward incentive conditions suffice
for all P ’s incentive conditions. Intuitively, whenever A, who has an upward bias, is indifferent
between two decisions, P must strictly prefer the lower decision.

We proceed to show the most interesting part of Theorem 1: P never randomizes in an opti-
mal PBE. The proof is involved because of the finiteness of decision set Y .7 We show that for
any PBE with non-degenerate lotteries, P can increase her expected payoff by replacing each
non-degenerate lottery with the higher decision in the lottery. Intuitively, P can at most be in-
different between two decisions in a non-degenerate lottery due to the strict concavity of her
payoff. Since A is biased upward, putting a marginally greater weight on the higher decision in
a non-degenerate lottery induces A to recommend the lottery for a set of higher states. However,
since P is initially indifferent between the two decisions in the lottery for a set of lower states,
she strictly prefers the higher decision now: this change directly makes her better off. Moreover,
at the thresholds, A is indifferent between adjacent lotteries, so P strictly prefers the lower lot-
teries due to a downward bias relative to A. Therefore, as the thresholds move up, A switches
to the lower lotteries and P benefits indirectly. Our proof exploits these direct and indirect ben-
efits to P repeatedly, by gradually shifting the weight from lower decisions to higher decisions
in all non-degenerate lotteries until she uses only the higher decision in each lottery. Finally,
we show that this change does not affect P ’s incentive conditions following A’s adjustments in
the partitioning of the states, by using the fact that the higher decision is initially used in the
lottery.

The above arguments allow us to reduce the problem of finding the optimal PBE to a con-
strained maximization problem where the set of feasible choices is all partition equilibria with a

6 The proof of the finiteness is quite standard, except that the distance between three rather than two adjacent induced
lotteries is bounded away from zero.

7 In CS, P ’s payoff function is strictly concave in a decision and the set of decisions is convex. Thus, upon receiving a
message, P has a unique optimal decision.
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finite number of elements that satisfy A’s indifference conditions (2) and P ’s adjacent downward
incentive conditions (3). This is summarized in Theorem 1, which also establishes that there is a
solution to the maximization problem.

Clearly, P cannot do worse than in any CS equilibrium, as she can replicate any CS equi-
librium outcome by restricting the set of decisions to those induced in the CS equilibrium. Our
second result shows that P can, in fact, do strictly better.

Proposition 1. P ’s expected payoff is strictly higher in the optimal PBE than in any informative
CS equilibrium.

In a CS equilibrium, each induced decision is ex post optimal for P in that it maximizes
her payoff over all possible decisions y ∈ R given P ’s belief about the state after receiving A’s
message. Therefore, P ’s incentive conditions (3) are not binding in an informative CS equi-
librium, and she can marginally increase any induced decision yi without violating (3). As P

increases yi , by the Envelope theorem, her expected payoff is unaffected by the introduction
of ex post inefficiencies, but is raised due to resulting increases in the partition thresholds θi−1
and θi . For example, as θi−1 increases to θ ′

i−1, an upwardly biased A induces yi−1 instead of a
higher decision yi for states θ ∈ (θi−1, θ

′
i−1], which increases P ’s expected payoff.

The logic of Proposition 1 implies that P can strictly improve her expected payoff by restrict-
ing the set of decisions even when no informative CS equilibrium exists. More formally, suppose
that an informative CS equilibrium exists whenever b is less than b∗, with two decisions y1
and y2. Then there exists ε such that for all b less than b∗ + ε, ε sufficiently small, P ’s expected
payoff is strictly higher in the optimal PBE than in any CS equilibrium. By Proposition 1, for
b less than b∗, P can increase either y1 or y2 to achieve the desired PBE. By the continuity
of u, these new induced decisions still constitute a PBE and P is strictly better off than in the
uninformative CS equilibrium at b = b∗ + ε.

Under additional assumptions on the function u, we can further strengthen Proposition 1. We
show that P ’s expected payoff is strictly higher in the optimal PBE than a babbling equilibrium if
and only if delegation is valuable under full commitment. Adopting a definition from Alonso and
Matouschek [3], we say that delegation is valuable if P can improve on the uninformed decision
yP by committing to letting A choose from some set of decisions.

Proposition 2. Let uP (y, θ) = −(y −yP (θ))2 and uA(. , θ) be symmetric around yA(θ). P ’s ex-
pected payoff is strictly higher in the optimal PBE than in any CS equilibrium if and only if
delegation is valuable.

The ‘only if’ part is immediate, because by Theorem 1 the optimal PBE is a partition equi-
librium and any partition equilibrium can be implemented through delegation as the incentive
conditions (3) for P are absent in delegation under full commitment. The proof of the ‘if’ part
is based on a result due to Alonso and Matouschek [3]. They show that if delegation is valuable,
then P can improve on implementing the uninformed decision yP by letting A choose between
exactly two decisions. We show that these two decisions satisfy P ’s incentive condition (3), and
thus can be induced in a PBE.

4. The uniform-convex loss example

This section focuses on a slight generalization of the leading example of CS.
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Assumption 2. f (θ) = 1 for θ ∈ (0,1], b < 1
2 , and u(y, θ,β) = −l(|y − (θ + β)|), where l is

strictly convex with l(0) = l′(0) = 0.

Assumption 2 includes the widely used uniform-quadratic example of l(z) = z2 as a special
case.8 Clearly, Assumption 2 satisfies Assumption 1, so Theorem 1 and Proposition 1 hold.9

The uniform-convex example is particularly well-behaved to apply the constrained maximization
program given in Theorem 1. This is because the combination of a uniform state distribution and
symmetric payoff functions ensures that, given the partition of the state space, only the distance
between each induced decision and the corresponding P ’s ex post optimal decision affects P ’s
payoff, and hence her choice of optimal decision set.

In the constrained maximization problem given in Theorem 1, the number of induced de-
cisions n is a choice variable. In order to tackle this problem and to characterize the optimal
PBE in Proposition 5, we take the following approach. We begin Section 4.1 by establishing in
Lemma 1 that in any optimal PBE each induced decision is higher than what is ex post optimal
for P , conditional on P learning the corresponding partition element. This simplifies P ’s incen-
tive conditions (3), and allows us to find an upper bound on the number of induced decisions
in the optimal PBE for any fixed b in Proposition 3. We call the PBE that achieves this upper
bound the maximal limited authority. Next, in Lemma 2 we solve a hypothetical full-commitment
problem of maximizing P ’s expected payoff with any n induced decisions, subject only to the
partition conditions (1) and A’s indifference conditions (2). Since the solution yields a higher
expected payoff to P for a larger n but satisfies P ’s incentive conditions (3) only if n is small,
we obtain in Proposition 4 a lower bound on the number of induced decisions in the optimal
PBE. We call the PBE that achieves this lower bound the minimal limited authority. In Sec-
tion 4.2, for each fixed b and each n between the two bounds, we derive in Lemma 3 the optimal
PBE conditional on n induced decisions. Finally, we compare the conditionally optimal PBE’s
in terms of P ’s expected payoff, and select among them the one with the highest payoff for P in
Proposition 5.

Our solution approach makes it easier to understand the main economic insight in this section.
Namely, the maximal limited authority given in Proposition 3 is generally suboptimal for P

because having the maximal number of induced decisions can lead to a greater ex post credibility
problem, forcing P to use some of the decisions only rarely. Instead, it may be optimal for P to
reduce the number of induced decisions, or to adopt the minimal limited authority constructed
in Proposition 4 with relaxed incentive conditions. Doing so improves the overall alignment of
the induced decisions with the true state, and hence P ’s expected payoff. An additional benefit
of the approach is that the characterizations of the maximal limited authority and the minimal
limited authority are particularly simple and amenable to comparative statics analysis. They are
used to provide various bounds on P ’s expected payoff under the optimal limited authority in
our welfare analysis of Section 5.

8 There is another uniform-quadratic example that has been analyzed in recent papers including Gordon [14] and

Alonso et al. [1]. In this example, A has an outward rather than upward bias such that his payoff is given by uA(y, θ) =
−(y − b − cθ)2 where b < 0 and b + c > 1. Intuitively, an outwardly biased A prefers extreme decisions when the state
of the world is extreme. In the example with outwardly biased A, there exists an equilibrium with a countable number of
induced decisions which eliminates an integer problem peculiar to the leading example of CS and simplifies the analysis.

9 For b � 1
2 , in the optimal PBE P makes the uninformative decision, which can be seen from the proof of Proposi-

tion 3. Thus we focus on the more interesting case b < 1 .
2
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4.1. Maximal and minimal limited authority

From Theorem 1, an optimal PBE exists and it is a partition equilibrium that satisfies A’s
indifference conditions (2) and P ’s adjacent downward incentive conditions (3). In the present
uniform-convex loss model, these conditions can be rewritten as: for all i = 2, . . . , n,

θi−1 + b − yi−1 = yi − θi−1 − b; (4)∣∣yi − y∗
i

∣∣� ∣∣y∗
i − yi−1

∣∣, (5)

where y∗
i = 1

2 (θi−1 + θi) is P ’s ex post optimal decision conditional on the interval (θi−1, θi].
We now show that each induced decision yi is higher than the ex post optimal decision y∗

i .

Lemma 1. In any optimal PBE with n induced decisions, yi > y∗
i for each i = 1, . . . , n.

In contrast with the CS equilibrium in which all P ’s decisions are ex post optimal, this lemma
shows that P sacrifices the best use of A’s information to provide him with better ex ante incen-
tives. Moreover, this sacrifice is in the direction of A’s bias. The first part of the proof of Lemma 1
establishes that if yi � y∗

i for some i = 1, . . . , n in the optimal PBE, then P ’s (i + 1)-th incen-
tive condition binds. Intuitively, if yi � y∗

i and the (i + 1)-th condition is slack, P can obtain a
greater expected payoff by marginally increasing yi without affecting any incentive condition.
Her payoff gain is clear: a higher yi moves her closer to her ex post optimal decision given the
same belief of the states; and the resulting increases in thresholds θi−1 and θi mean that A now
recommends yi for a set of higher states, making P better off by the same argument as in Propo-
sition 1.10 The second part of the proof uses the special structure of the uniform-convex loss
model to show that yi � y∗

i is incompatible with binding P ’s (i + 1)-th incentive condition.
We now restate the constrained maximization problem of Theorem 1 for the uniform-convex

loss setup by substituting out A’s indifference conditions (4). The choice variables are {yi}ni=1
and n. By partition condition (1), θ0 = 0 and θn = 1, so P ’s objective function becomes

Un = −
n∑

i=1

θi∫
θi−1

l
(|θ − yi |

)
dθ. (6)

The constraints are, in addition to (4),

y1 < · · · < yn, (7)

y1 + y2 > 2b, (8)

yi+1 − yi−1 � 4b, for each i = 2, . . . , n − 1, (9)

yn + yn−1 � 2(1 − b). (10)

Conditions (7) are part of the partition condition (1). Condition (8) ensures that θ1 > 0;
θn−1 < 1 is implied by condition (10); and θ1 < θ2 < · · · < θn−2 < θn−1 follow from (7). Con-
ditions (9) and (10) are equivalent to P ’s incentive conditions (5) for i = 2, . . . , n by Lemma 1.

10 This holds for the general model setup in Section 2, not just the uniform-convex loss model here. In the general
model, this result implies that in an optimal PBE the highest decisions yn and yn−1 satisfy yn > y∗

n and yn−1 > y∗
n−1,

and that no two adjacent decisions yi and yi+1 are below y∗
i

and y∗
i+1 respectively. Further, in the hypothetical problem

of full commitment with a fixed number of decisions introduced later in this section, every decision yi is strictly higher
than y∗ for similar reasons.
i
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Condition (10) takes a different form because θn = 1 by partition condition (1), instead of being
determined by A’s indifference condition (4). Note that conditions (9) are absent when n = 2.

As the number of decisions n is a choice variable, we begin by finding an upper bound on the
optimal number of decisions. Clearly, conditions (9) and (10) place constraints on the distance
between decisions, and hence the maximum number of decisions induced in an optimal PBE.
Our next result characterizes this number and, more importantly, shows that there always exists
a PBE in which this maximum number of decisions is induced.

Proposition 3. The number of decisions induced in an optimal PBE is strictly less than 1/(2b)+
1. Conversely, there exists a PBE with n induced decisions for any natural n < 1/(2b) + 1.

We establish the second part of Proposition 3 by a construction which we denote as Yn =
{yn

i }ni=1 for all n < 1/(2b) + 1. For n � 3, this construction binds all P ’s incentive condi-
tions with symmetric and equidistant decisions.11 That is, Yn = { 1

2 − (n + 1 − 2i)b}ni=1 for
3 � n < 1/(2b) + 1. Among these PBE’s, the one with the largest n is called maximal limited
authority. It is instructive to compare the maximal limited authority with the most informative
CS equilibrium. In a CS equilibrium, the distance between subsequent induced decisions grows
at the rate 4b, that is, yi+1 − yi = yi − yi−1 + 4b for i = 2, . . . , n − 1. Hence the number of
induced decisions n in any CS equilibrium has to satisfy 2n(n − 1)b < 1. Under Yn, in contrast,
the distance between two adjacent decisions is always 2b. As a result, the number of induced
decisions under the maximal limited authority is the largest natural n satisfying 2(n − 1)b < 1,
which is greater than that in the most informative CS equilibrium.

Although Proposition 3 is specific to the uniform-convex loss setup, there is a more general
logic behind the result that more decisions can be induced under maximal limited authority than
under the most informative CS equilibrium. In a CS equilibrium, each induced decision yi is
ex post optimal conditional on the corresponding interval (θi−1, θi] because P has no commit-
ment power. Instead, because P has some commitment power in our model, by Theorem 1, P ’s
incentive conditions require only that P prefers yi to the adjacent lower decision yi−1 condi-
tional on (θi−1, θi]. Thus the partitioning of the state space under limited authority need not be
as rightward skewed as in a CS equilibrium.

We now construct a lower bound on the number of decisions that can be induced in the optimal
PBE. Intuitively, for any given bias, in the optimal PBE with n induced decisions, incentive
conditions (3) are not binding if n is sufficiently small. Thus, as n grows, P ’s expected payoff
increases until n reaches the lower bound at which incentive conditions start to bind. Formally,
for each n, we consider the hypothetical problem of maximizing (6) subject to constraints (7),
(8), and

yn−1 + yn < 2(1 + b), (11)

where we have dropped P ’s incentive conditions (9) and (10), but added (11) to ensure that
θn−1 < 1. The following lemma provides a characterization of the solution to this problem, which
we denote as Yn = {yn

i }ni=1.

11 When n = 2, the maximum limited authority coincides with the full-commitment solution introduced in Lemma 2,
so P ’s incentive condition does not bind. See the proof of the proposition in Appendix A.
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Lemma 2. For any natural n, Yn is given by yn
i = 1

2 − (n+1−2i)δn, i = 1, . . . , n, where δn > 0
is uniquely determined by

2l
(
yn

1

) = l
(
b + δn

) + l
(∣∣b − δn

∣∣).
Note that δn decreases with b for each n, and decreases with n for fixed b. Since we have

dropped P ’s incentive conditions, Yn gives P her highest expected payoff under full commitment
with the restriction to a finite number n of decisions. To maximize P ’s payoff given by (6),
P places all decisions at equal distance and symmetric around 1

2 . The decisions need to be
equidistant to make the partition of the state space uniform in that θi − θi−1 = 2δn for all i =
2, . . . , n − 1. The uniform partition in turn minimizes the loss of information, which can be
loosely understood as the average residual uncertainty of the state of the world provided that
P learns the partition elements (see Section 5.3 for more details when the payoff function is
quadratic). The decisions yn

i are symmetric around 1
2 because P is unbiased in that yP (θ) = θ .

As n → ∞, the decisions become arbitrarily close to [b,1 − b], because δn → 0 and yn
1 → b

as n → ∞. In fact, the optimal decision set is equal to [b,1 − b] in the full-commitment model
in which P can commit to not to change A’s recommendation without the restriction to a finite
number of decisions (see the proof of Proposition 6).

A robust feature of models with full commitment is that more decisions can only improve A’s
communication quality because P commits to not using the information A revealed strategically.
Thus, not surprisingly, Lemma 2 implies that as n increases, P ’s expected payoff Un in the hy-
pothetical full-commitment problem strictly increases. An important implication is the following
result.

Proposition 4. The number of decisions induced in an optimal PBE is at least 2; if 3 or more
decisions are induced, then it is at least as large as max{n | δn � b}.

To see why, note from Lemma 2 that, for fixed b, the distance 2δn between any two adjacent
decisions in Yn decreases with n. Moreover, for any n� 3, P ’s incentive conditions (9) are sat-
isfied if and only if δn � b. P ’s remaining incentive condition (10) is satisfied when δn � b since
yn

1 > 0. Finally, Y 2 is always incentive compatible for P for b < 1
2 (see the proof of Proposi-

tion 3), implying that at least two decisions can be induced in an optimal PBE.
We refer to Yn as the minimal limited authority in this uniform-convex loss model when n

achieves the lower bound from Proposition 4. By construction, P ’s incentive conditions (9) are
dropped in deriving each Yn. Thus, the minimal limited authority has the largest number of
induced decisions in any PBE in which P ’s incentive conditions are all slack.

4.2. Optimal limited authority

Propositions 3 and 4 respectively identify the upper and the lower bounds of the number of
induced decisions for any fixed b in an optimal PBE. We now characterize the optimal PBE
conditional on each number of induced decisions n lying between the two bounds. To do so, we
first vary n and characterize the interval of values of b for which n falls between the upper and the
lower bounds. We then solve the problem of maximizing P ’s expected payoff (6) by choosing a
set of n decisions, subject to all constraints (7)–(10). The solution to this problem, Yn = {yn

i }ni=1,
is called the n-optimal limited authority for any value of b in the interval since it is conditional
on a fixed n.
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Fix any n� 2. By Proposition 3, Yn is defined only if b < bn where

bn ≡ 1

2(n − 1)
. (12)

Note that b2 = 1
2 . By Proposition 4, for each n� 3, Yn satisfies P ’s incentive conditions (9) and

(10) if b � δn. Since δn is implicitly a decreasing function of b given in Lemma 2, b � δn is
equivalent to b � bn, where bn is uniquely determined by setting δn to b:

2l
(
1/2 − (n − 1)bn

) = l
(
2bn

)
. (13)

By Lemma 2, Y 2 is always incentive compatible for P , so we write b2 = b2 = 1
2 . Moreover,

bn < bn for each n � 3, and both bounds are decreasing in n: the smaller A’s bias is, the more
decisions can be induced. It follows that Yn is defined for bn+1 < b < bn. Within this interval,
if b ∈ (bn+1, bn], P ’s incentive conditions (3) are satisfied under Yn, and thus Yn = Yn. But if
b ∈ (bn, bn), we show next that the optimal decisions in Yn may no longer be evenly-spaced even
though Yn remains symmetric around 1

2 with every other decision exactly 4b apart. In particular,
Yn coincides with Yn if and only if n is odd.

Lemma 3. For any n � 3, the n-optimal limited authority Yn is defined for (bn+1, bn). Specif-
ically, Yn = Yn for b ∈ (bn+1, bn]; Yn = Yn for b ∈ (bn, bn) and n odd; and Yn is otherwise
given by yn

i = 1
2 − (n − 2i)b − δn

1 for odd i, and yn
i = 1

2 − (n + 2 − 2i)b + δn
1 for even i, where

δn
1 < b is determined by

2l
(
yn

1

) = l
(
b + δn

1

) + l
(
b − δn

1

) − n − 2

2

[
l
(
3b − δn

1

) − l
(
b + δn

1

)]
. (14)

Unlike minimal and maximal limited authority, n-optimal limited authority depends on
whether n is odd or even for b > bn. When n is odd, the decisions are all equidistant at 2b.
But when n is even, the decisions are equidistant in an alternating manner, with yn

i+1 − yn
i equal

for all odd i and for all even i respectively (but strictly smaller than 2b for odd i). Intuitively, be-
cause P ’s incentive conditions require only every other decision to be 4b apart, P can ‘fine-tune’
the placements of the decisions to increase her expected payoff in the case of even n. In partic-
ular, if decisions {yn

i }ni=1 were all 2b apart and symmetric around 1
2 , then without violating any

incentive conditions, P could increase her payoff by increasing yn
i for all odd i and decreasing

it for even i by the same amount.
The crucial feature of the n-optimal limited authority for b > bn is that P ’s incentive condi-

tions are all binding. That is, whenever Yn differs from Yn, P is indifferent between implement-
ing each recommended decision yn

i and replacing it with the adjacent lower decision yn
i−1 for

each i = 2, . . . , n − 1. Otherwise, if some, but not all incentive conditions (9) were binding, it
would be possible to modify the decisions to make them more equidistant and thus increase P ’s
payoff. For example, if yn

i+1 − yn
i−1 > 4b for some i, then we could increase yi−1 or decrease

yi+1 without violating any incentive condition of P .
An important implication of binding P ’s incentive conditions is that P ’s expected payoff

may not increase in the number of induced decisions. Instead, P must trade off the number of
decisions with their placement: one more decision is useless if it is rarely used. In fact, it can be
shown that the smallest threshold θ1 approaches 0 as b approaches bn. In other words, A almost
never recommends yn

1 and P almost never uses it. Essentially, P only uses the remaining n − 1
decisions, which are placed asymmetrically and thus suboptimal to Yn−1 by Lemma 3.
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We now characterize the optimal PBE by choosing the optimal n among all feasible n-optimal
limited authority for each fixed b. Note that for all n� 3, from (12) and (13) we have

bn < bn+1 < bn−1.

That is, the upper bound and the lower bound on the number of induced decisions in any optimal
PBE differ either by 2 when b ∈ (bn, bn+1), or by 1 when b ∈ (bn+1, bn−1).12 As a result of
the above inequalities, we can restrict the search for the optimal PBE in the interval [bn, bn−1)

to three conditionally optimal decision sets: Yn−1, Yn and Yn+1. Note that Yn−1 = Yn−1 by
Lemma 3 for any b in this interval, so that P ’s incentive conditions are not binding under Yn−1.
To emphasize this feature, we write Yn−1 instead of Yn−1 in the ensuing analysis.

The general idea behind the comparison among Yn−1, Yn and Yn+1 is as follows. First, as
mentioned above, at b just below the cutoff value bn+1, P strictly prefers Yn to Yn+1 because
the additional decision in Yn+1 does nothing to improve her expected payoff, but distorts the
quality of her decisions. Second, at b = bn, the optimal decision sets under full commitment
and limited authority are identical: Yn = Yn. P ’s expected payoff jumps down discontinuously
at bn if decisions change from Yn to Yn−1. In contrast, Yn changes continuously with b at bn.
Consequently P is strictly better off with Yn than with Yn−1 if b is sufficiently close to and
greater than bn.

To go beyond these comparisons, we specialize to the case of power loss functions. This case,
standard in the existing literature, also allows for a sharper characterization of the optimal PBE
and facilitates comparative statics analysis in Section 5.

Proposition 5. Suppose that l(z) = (|z|)q with q > 1. For n sufficiently large, there exists
bn,n−1 ∈ (bn, bn−1) such that the induced decisions in the optimal PBE are given by Yn for
all b ∈ [bn, bn,n−1), and by Yn−1 for all b ∈ [bn,n−1, bn−1).

As b increases in the interval (bn, bn−1), P ’s expected payoff decreases under each of Yn−1,
Yn and Yn+1. The proof of Proposition 5 uses the assumption of power loss function to rank the
rate of decrease for the three sets of decisions for any fixed n. In particular, we show that P ’s ex-
pected payoff Un(b) under Yn decreases slower than her expected payoff Un+1(b) under Yn+1.
Next, we show that Un(b) can cross P ’s expected payoff Un−1(b) under Yn−1 only from above.
Moreover, if n is sufficiently large, P strictly prefers Yn−1 to Yn at bn−1.13 Shifting the indices
forward by 1 and noting that Yn = Yn at bn, we have that P strictly prefers Yn to Yn+1. This
evaluation then allows us to establish the proposition.

Proposition 5 makes it clear that the optimal limited authority does not generally coincide
with the maximal limited authority. This non-optimality is reflected in two different ways. First,

12 To see why the above inequalities hold, note that the function g(n, b) ≡ 2l(1/2 − (n − 1)b) − l(2b) is decreasing in

b for b ∈ (0, bn) and is equal to 0 at bn for all n. The first inequality above holds because g(n, bn+1) = 2l(1/(2n)) −
l(1/n) < 0 for any convex loss function l; the second inequality holds because g(n − 1, bn+1) = l(1/n) > 0.
13 More precisely, P strictly prefers Yn−1 to Yn at bn−1 if n is odd, but the opposite is true if n is even and small

and if q is large. What happens when n is even is that, starting from placing all n decisions at equal distance of 2bn−1

and symmetric around 1
2 , by ‘fine tuning’ the placements of the decisions according to Lemma 3 P can obtain a strictly

higher payoff than under Yn−1 if n is small and q is large, which is precisely when such fine-tuning matters greatly to
P ’s payoff. In this case, the induced decisions in the optimal PBE is given by Yn for all b ∈ [bn, bn−1). Conversely, the
fine-tuning matters little if n is large and/or q is small. An example is Corollary 1 below, where q = 2 implies that P

strictly prefers Yn−1 to Yn at bn−1 for all n.
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when b falls in [bn, bn+1), Yn+1 is available but never optimal for n sufficiently large. Second,
when b falls in (bn,n−1, bn−1), Yn is available but P strictly prefers Yn−1 for n sufficiently large.
As already mentioned, the incentive conditions of P are slack under Yn−1, but are binding un-
der Yn. Intuitively, in an optimal PBE, P retains fewer decisions to relax the incentive conditions
due to limited authority.

The result that under limited authority P does not always maximize the number of induced
decisions contrasts strongly with the standard models where P has either full commitment or no
commitment. Recall from Theorem 1, however, that we restrict the search for the optimal PBE
under limited authority to decision sets that are minimal and veto-free. The minimality requires
that each decision is induced in some states, precluding the standard reasoning that adding a
decision cannot make P worse off. In our model of limited authority, similar to models with
full commitment, a larger number of induced decisions tends to allow A to make better use
of his private information, resulting in a smaller loss of information that would benefit P . But
the similarity stops here: each additional decision also presents P with a credibility problem,
which can only be addressed by altering the placements of the decisions. When such placements
become too extreme, the induced decisions become on average less aligned with the true state.
These distortions from avoiding the credibility problem may be so great that P prefers a PBE
with a smaller number of induced decisions but a higher quality of decision making.

We conclude this section by pointing out that in the familiar case of l(z) = z2, Proposi-
tion 5 can be further strengthened. In fact, the characterization of the set of induced decisions
in the optimal PBE holds for each n � 3, not just for sufficiently large n. Furthermore, we
can further establish that the cutoff value bn,n−1 for each n � 3 is strictly greater than bn+1.
Thus, the number of induced decisions under the maximal and optimal limited authority is the
same for b ∈ [bn+1, bn−1,n), and differs by 1 for b in the interval [bn, bn+1) and in the interval
[bn−1,n, bn−1). In the last case, the optimal limited authority and the minimum limited authority
coincide.

Corollary 1. Suppose that l(z) = z2. For each n� 3, there exists bn,n−1 ∈ (bn+1, bn−1) such that
the induced decisions in the optimal PBE are given by Yn for all b ∈ [bn, bn,n−1), and by Yn−1

for all b ∈ [bn,n−1, bn−1).

5. Welfare analysis

This section focuses on P ’s ex ante expected payoff under optimal limited authority. Through-
out this section, we say that one outcome is better than another if ex ante, P strictly prefers the
former outcome. In Section 5.1, we compare quantitatively our model of limited commitment
with the two benchmark models where P has full commitment and no commitment. By full
commitment or optimal delegation, we mean the best outcome that P achieves when she com-
mits to a mapping from A’s messages to decisions; and by no commitment or cheap talk, we
mean the most informative CS equilibrium outcome. Section 5.2 carries out the main compari-
son between two limited commitment models, limited authority and full delegation, where A’s
preferred decision is chosen for all states. In both these subsections, we maintain Assumption 2
and mostly restrict to power loss functions, although some of the results hold for the general
model of Section 3. Finally, Section 5.3 presents further welfare analysis for the special case of
the quadratic loss function.
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5.1. Comparison with optimal delegation and cheap talk

To understand the quantitative comparison of P ’s payoff when she has different commitment
power, observe that for b � 1

2 , optimal delegation, limited authority, and cheap talk implement the
same outcome, the uninformed decision 1

2 , and thus are equivalent. For b < 1
2 , P ’s expected pay-

off continuously decreases with A’s bias for any given commitment power. In this case, optimal
delegation is better than limited authority which in turn is better than cheap talk. Proposition 6
quantifies these comparisons when A’s bias is small.

Proposition 6. Suppose that l(z) = (|z|)q with q > 1. For b arbitrarily small, P ’s expected payoff
is −(2b)q/(q + 1) + o(bq) under limited authority, −bq + o(bq) under optimal delegation, and
−(2b)q/22/((q + 1)(q + 2)) + o(bq/2) under cheap talk.

When A’s bias is small, P ’s expected payoff is of the same order of A’s bias under optimal
delegation and limited authority, and is much lower under cheap talk. Intuitively, under limited
authority, induced decisions are approximately 2b apart, so there are approximately 1/(2b) in-
duced decisions, and P ’s expected payoff (6) is approximately

− 1

2b

2b∫
0

θq dθ = − (2b)q

q + 1
.

The optimal delegation set is [b,1 − b] as suggested by Lemma 2 with large n, so P incurs a
payoff loss of bq due to A’s bias. Under cheap talk, however, the partition is coarse such that
the distance between adjacent decisions grows at the approximate rate 4b, leading to a much
larger loss (infinitely larger when b approaches 0) compared to the other models. Not only more
decisions can be induced under both optimal delegation and limited authority, these decisions are
also more evenly spaced and thus better aligned with the true state.

5.2. Comparison with full delegation

In our limited authority model, ex ante P can credibly exclude some decisions but she cannot
credibly promise to let A decide among the retained decisions. Under full delegation, on one
hand, P ’s commitment power is decreased because she cannot exclude any decision; but on the
other hand her commitment power is increased because now she commits herself to letting A

decide. As argued by Dessein [12], P can, and does fully delegate her decision-making authority
to a better informed A in many real life examples. The welfare comparison between limited
authority and full delegation helps us understand whether it is more important for an organization
to limit the authority of decision-makers or to pass the authority to those who hold the most
relevant information.

Dessein [12] shows that under the assumption that the state is uniformly distributed, full dele-
gation is better than cheap talk as long as A’s bias is not so large that cheap talk is uninformative.
In fact, full delegation and optimal delegation give P the same expected payoff if b is sufficiently
small. The following result follows immediately from Proposition 6.

Corollary 2. Suppose that l(z) = (|z|)q with q > 1. Full delegation is better than limited author-
ity if b is arbitrarily small.
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In contrast to Dessein [12], however, for any power loss function, there exists b at which
limited authority is informative and is better than full delegation. Indeed, limited authority is
informative so long as b < 1

2 . As b approaches 1
2 , P ’s expected payoff approaches −2−q/(q +1),

which is her payoff under limited authority from making the uninformed decision of 1
2 . This is

clearly higher than −2−q , her payoff under full delegation.
Perhaps more surprisingly, for any number of induced decisions, limited authority can be

better than full delegation when the power of the loss function is sufficiently close to 1. To
illustrate, we use our maximal limited authority construction Yn characterized in Proposition 3
for any n� 3. Recall from Section 4 that bn+1 = 1/(2n) is the largest b such that n+ 1 decisions
can be induced under maximal limited authority, thus Yn exists at b = bn+1. The advantage of
using Yn instead of optimal limited authority is its simplicity: all the decisions are 2b apart, with
θn

i = yn
i from A’s indifference condition. We can then show that P ’s expected payoff (6) under

Yn is strictly higher than under full delegation if and only if

n <
2q − 1

2q − (q + 1)
.

Observe that the right-hand side of the above inequality is decreasing in q for q ∈ (1,2), becomes
arbitrarily large as q approaches 1, and equals 3 at q = 2. Thus, for any n � 3, there exists qn

such that Yn is better than full delegation at bn+1 if and only if q < qn. Further, qn ∈ (1,2]
decreases with n and converges to 1 as n becomes arbitrarily large. This result shows that if
P is sufficiently close to being risk neutral, optimal limited authority can be better than full
delegation, no matter how small A’s bias is or how informative the communication under limited
authority is.

Little can be established in general about comparative statics with respect to b for fixed q .14

The comparative statics with respect to q , however, is general.

Proposition 7. Suppose that l(z) = (|z|)q with q > 1. For any b ∈ (0,1/2), there exists q(b) such
that limited authority is better than full delegation if and only if q < q(b).

Intuitively, under full delegation, P incurs a deterministic loss of bq , but under limited author-
ity, P incurs a stochastic loss of (|y − θ |)q where y = yi when θ lies in the interval (θi−1, θi].
Thus it is easy to see that at the extremes, limited authority is better than full delegation for any b

if P is risk neutral (q is arbitrarily close to 1), and the reverse holds if P is infinitely risk averse
(q is arbitrarily large). In fact, Proposition 7 shows that there exists a cutoff value of q such that P

is indifferent. For all q below this cutoff, l becomes less convex and P becomes less risk averse,
so she is more willing to take a stochastic loss if the partition equilibrium ({θi}ni=0, {yi}ni=1) is
fixed. But since the partition equilibrium is optimally chosen by P , limited authority becomes
even more attractive than full delegation as q decreases.

14 In particular, it is not true that limited authority is better than full delegation if and only if b is strictly greater than a
cutoff. As can be seen from Fig. 1 in Section 5.3, under the quadratic loss function, P ’s expected payoff is the same under
limited authority and full delegation at multiple values of b in the interval (0,1/2). Therefore, for q slightly less than 2,
the continuity of P ’s expected payoff in q and Proposition 7 imply that limited authority is better than full delegation if
and only if b is close to 1/6 or greater than 0.197.
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Fig. 1. P ’s expected payoff.

5.3. Further comparisons under quadratic loss

We now turn to the familiar quadratic loss function example used widely in the communi-
cation and delegation literature. Because of its simplicity, we can explicitly calculate optimal
limited authority from the characterization of Corollary 1. This enables us to make the welfare
comparisons in the previous subsections exact.

Fig. 1 illustrates P ’s expected payoff for all possible values of A’s bias b ∈ (0, 1
2 ) under the

four models we have studied. Clearly, for the whole range of A’s bias, P ’s expected payoffs are
considerably lower under cheap talk than under limited authority, full delegation and optimal
delegation. In particular, P ’s payoff under limited authority is almost as high as her payoff under
optimal delegation even though only finite decisions can be induced under limited authority.
Moreover, full delegation and limited authority give P the same payoff more than once, and
limited authority dominates when b is greater than approximately 0.197.

The key feature of limited authority is that P improves her payoff by giving up some control
ex post for better information ex ante. One natural question to ask is what happens to A’s payoff.
Under quadratic loss, we can answer this question by decomposing P and A’s expected payoffs
as the sum of the loss of information and the loss of control:

UP = −E
[
(y − θ)2] = −E

[(
ym −E[θ |m])2]︸ ︷︷ ︸

P ’s Loss of Control

− E
[
Var(θ |m)

]︸ ︷︷ ︸
Loss of Information

,

UA = −E
[(

y − (θ + b)
)2] = −E

[(
ym −E[θ |m] − b

)2]︸ ︷︷ ︸
A’s Loss of Control

− E
[
Var(θ |m)

]︸ ︷︷ ︸
Loss of Information

,

where ym, E[θ |m], and Var(θ |m) are respectively the decision taken, the expectation, and the
variance of the state θ given a message m (under P ’s beliefs). The loss of information is defined
as the expected conditional variance of the state given P ’s belief at the time of decision making.
Therefore, the loss of information captures the residual uncertainty that P has after communica-
tion takes place, which is the same for P and A. The loss of control for P and A is defined as
the expected losses from making decision ym instead of their ex post optimal decisions given the
message m.
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Ex ante, both P and A prefer limited authority to cheap talk. To see this, note that from the
above decomposition we have

UA = UP + 2b
(
ym −E[θ |m]) − b2.

By Proposition 2, UP is higher under limited authority than under cheap talk. Since ym > E[θ |m]
under limited authority by Lemma 1 while ym = E[θ |m] under cheap talk, UA is also higher
under limited authority than under cheap talk. Intuitively, P is better off under limited authority
compared to cheap talk, because her loss of information decreases more than the increase in her
loss of control; and A is also better off because P cedes part of the control to A by choosing
higher than ex post optimal decisions.

Many existing papers have analyzed extensions of the CS model that improve communication
quality and hence P ’s welfare. The assumption of quadratic loss makes it particularly simple
to compare our limited authority model with these existing models. To do so, we introduce the
following synthesis. Start with the CS cheap talk model, in which Nature draws the state of
the world θ ∈ Θ , A privately observes θ and sends a message m ∈ M to P , and P makes a
decision y ∈ Y . Imagine a fourth non-strategic player who takes some input and returns a possi-
bly stochastic output according to some pre-specified mapping. Each possible way that a fourth
player is introduced into the game corresponds to a different organizational form. First, the fourth
player may replace an existing player, P or A. Under delegation, the fourth player replaces P :
A sends a message m to the fourth player instead of to P , and the fourth player then makes a
decision y. This includes both full delegation, in which the fourth player is just A, and optimal
delegation, in which the fourth player is optimally designed by P . Under persuasion, the fourth
player replaces A: the fourth player observes the state θ and sends a message m to P . Second,
the fourth player may be an impartial mediator who acts on state, message or decision. Under
informational control, the fourth player privately observes the state θ and sends a private signal
to A, which becomes his sole information in the ensuing cheap talk game. Under noisy talk, the
fourth player receives a message m from A and sends a perturbed message to P . Finally, in our
limited authority model, P receives a message from A and then recommends a decision y to the
fourth player who makes a decision.15

Using the quadratic loss function, we can compare P and A’s expected payoffs for a small
bias b under all organizational forms by calculating the first term in the Taylor expansion (see
Table 1).16

15 Holmstrom [19], Melumad and Shibano [30], Alonso and Matouschek [3], and Kovac and Mylovanov [25] study
optimal delegation, while Dessein [12] studies full delegation. Kamenica and Gentzkow [22] analyze optimal persuasion
that maximizes A’s expected payoff, while full information transmission maximizes P ’s expected payoff. Ivanov [21]
studies optimal informational control. Goltsman et al. [13] study optimal message mediation and show that it is equiv-
alent to optimal noisy talk studied by Blume et al. [8]. There are also papers that can be viewed as a combination of
the introduced organizational forms in that more than one non-strategic player is added. For example, Anesi and Seid-
mann [5] study optimal delegation in the uniform-quadratic example with a finite number of states. This can be viewed
as a combination of delegation and informational control where A only observes a partitional element that contains the
underlying continuous state. A complementary set of papers such as Ivanov [20], Li [28] and Ambrus et al. [4] study
communication with strategic message mediators.
16 We believe that these results hold more generally with a caveat that each row of Table 1 is multiplied by some
constant. In particular, we expect them to hold if P ’s and A’s payoff functions satisfy Assumption 2 and l′′(0) > 0.
Intuitively, as the bias goes to zero, the distance between any two subsequent decisions also goes to zero. Therefore,
we can approximate the loss functions by quadratic functions, and also approximate the state distribution function by a
piecewise uniform distribution.
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Table 1
P and A’s expected payoffs under all organizational forms for a small bias.

Persuasion Informational
control

Optimal
delegation

Full
delegation

Limited
authority

Noisy
talk

Cheap
talk

UP 0 − 1
3 b2 −b2 −b2 − 4

3 b2 − 1
3 b − 1

3 b

UA −b2 − 4
3 b2 − 8

3 b3 0 − 1
3 b2 − 1

3 b − 1
3 b

To understand these payoff comparisons, we again decompose the payoffs of P and A into
the loss of information and the loss of control. In terms of the loss of control, in all organiza-
tional forms, either P or A has essentially no loss of control, and thus the other party has a loss
of control equal to b2. Under delegation and limited authority, P has commitment power and
effectively delegates authority to A to improve information transmission, and her loss of con-
trol b2 is simply due to A’s bias. Under remaining organizational forms, P makes an ex post
optimal decision, and thus she has no loss of control. Regarding the loss of information, there
is essentially no loss of information under delegation and persuasion because the state is almost
fully revealed. The loss of information is approximately 1

3b2 under informational control and
limited authority because induced decisions are approximately 2b apart from each other.17 Un-
der cheap talk and noisy talk, however, the partition is coarse such that the distance between
adjacent decisions grows at the approximate rate 4b, leading to a much larger loss of information
of approximately 1

3b. Combining these two parts lead to the payoff comparisons in Table 1.

6. Concluding remarks

Our model of limited authority aims to explore and understand the environment in which the
principal has some degree of commitment power, but not all. We now discuss how the optimal
equilibrium may be affected by different assumptions about the communication process and con-
tracting environment (see Kolotilin [24] for more detailed expositions) as well as some thoughts
for further research.

Because only finitely many decisions can be induced in any optimal equilibrium under limited
authority, one may wonder whether the principal benefits from a finite decision set per se, that
is, when the principal’s decision space is discrete. It can be shown that in the uniform-convex
setup in Section 4, the equilibria in the CS model with a discrete set of decisions are similar to
equilibria in the CS model with a continuous set of decisions, but with a modified smaller bias.
Therefore, by discretizing the set of available decisions, the principal can effectively decrease
the agent’s bias and improve communication.18 In fact, under the optimal limited authority given
in Proposition 5, the agent’s effective bias disappears so that a uniform partition becomes feasi-
ble.

One possible critique of the limited authority model is that parties can renegotiate, after
the agent’s recommendation, to a decision not in the pre-specified set if both prefer to do so.
To address this issue, we can strengthen our solution concept to optimal renegotiation-proof

17 This connection between limited authority and informational control is due to the limited commitment power of both
A and P . Under limited authority, P makes the decision space discrete to relax her incentive conditions, whereas under
informational control, P makes the state space discrete to relax A’s incentive conditions.
18 This result resembles that of Alonso and Matouschek [2] who show that the principal’s commitment power reduces
the agent’s ‘effective’ bias.
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equilibrium. In our model the scope for renegotiation is limited for two reasons. First, because
transfers between the parties are not allowed, both the principal and the agent must prefer the
renegotiated decision to the optimal equilibrium decision. Second, in any PBE there is unresolved
uncertainty about the state of the world after the agent’s recommendation. Hence the principal
does not know to which decision, if any, she should renegotiate. In the uniform-quadratic setup,
we can show that a renegotiation-proof equilibrium exists, and has a maximal number of induced
decisions characterized by Proposition 3.

Another critique is that if the principal can credibly restrict the set of decisions ex ante, she
may also be able to commit to transfers contingent on decisions. Following the literature on
communication and delegation, we have ruled out such transfers in the present limited authority
model.19 Note that with transfers, the principal can do at least as well as in the limited authority
model by committing to no transfers for decisions in the pre-specified set and very large trans-
fers for decisions outside the set. In fact, with transfers, the principal can achieve the first best
outcome, which maximizes the sum of the principal and agent’s expected payoffs if there are
no monetary frictions. Not all decision rules, however, can be supported with transfers. For ex-
ample, the principal’s and the agent’s optimal decision rules are not achievable. Further, if there
are frictions, such as when the agent is protected by limited liability or if the principal can only
‘burn’ money, then there is a tradeoff between making efficient decisions and leaving a quasi-rent
to the agent. Due to this tradeoff, there is incomplete information revelation for high states of the
world, even though full information revelation is feasible.20

In the current model, the principal never vetoes the agent’s recommendation in equilibrium.
A further topic of research is to extend our model to allow veto to happen in equilibrium. One way
to model this is to imagine that there is some small, exogenous probability that the principal can
observe the true state after hearing the agent’s recommendation, and may consequently desire
to change her decision (still within the pre-specified decision set) given this information. In
this case, it is without loss of generality to restrict to equilibria in which the principal follows
the agent’s recommendation when she does not learn the state and otherwise makes a choice
independent of the recommendation. Thus, any equilibrium characterized in Theorem 1 remains
feasible, and further, the principal can do better by adding any decision that is chosen with zero
probability in equilibrium so long as her incentive conditions (when she does not learn the state)
are unaffected. The interesting question is how the principal optimally modifies the decisions
that are used with positive probabilities when she does not learn the state, in order to retain more
decisions that she will use when she does. Answering this question can further our understanding
of the principal’s tradeoff between maintaining the flexibility of responding to new information
and establishing the credibility of letting the agent best use his private information.

19 Monetary transfers may be explicitly ruled out by law, or implicitly ruled out if the parties involved are very risk
averse with respect to money. The assumption that there are no transfers is strong: even though explicit transfers between
parties may be ruled out, the parties can effectively ‘burn’ money, which generally improves their welfare. See, for
example, Austen-Smith and Banks [6].
20 This result is analogous to that of Krishna and Morgan [26] who consider a communication game in which the
principal can commit to transfers contingent on messages and the agent is protected by limited liability. Kartik [23]
obtains a somewhat similar result. He shows that in a model of communication with lying costs, there is pooling for high
states of the world.
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Appendix A. Proofs

Proof of Theorem 1. We prove the theorem through a series of claims.
First, we establish that it is without loss of generality to restrict attention to PBE’s in which all

decisions in P ’s equilibrium choice Y are induced, each message from A is a recommendation of
some probability distribution over Y , and no recommendation is vetoed by P . This is a version
of the revelation principle adapted to our setting. Fix any PBE and the subgame after P has made
the equilibrium choice Y . We refer to any response by P to a message m from A as a lottery, and
a particular choice from Y as a degenerate lottery. We say that two PBE’s are outcome equivalent
if they both result in the same (random) mapping from states to decisions on the equilibrium path.

Claim 1. Consider a PBE with P ’s equilibrium choice Y . There exists an outcome-equivalent
PBE with P ’s equilibrium choice Ỹ ⊆ Y , where Ỹ is the union of the supports of all induced
lotteries and for any induced lottery there is a unique y in its support chosen by A as a message.

Proof. Fix any PBE and the subgame after P has chosen the equilibrium Y . Since uP (·, θ)

is strictly concave, there are at most two decisions y and y′ in Y that are optimal given the
equilibrium belief of P conditional on any m. Thus, a non-degenerate lottery has exactly two
decisions. Moreover, if y and y′ in Y satisfying y < y′ are in the support of some lottery, then
(y, y′) ∩ Y = ∅; otherwise, strict concavity of uP (·, θ) implies that the lottery would not be
optimal for P . Finally, no two induced lotteries have the same support. Otherwise, if y, y′ ∈ Y

with y < y′ are in the common support of two distinct lotteries induced after A chooses m and m′
respectively, then one of them, say the lottery following m′, first order stochastically dominates
the other. Since uyβ > 0, P being indifferent between y and y′ given the belief conditional on
m implies that A strictly prefers y′ to y given the same belief. Thus, there are states in which
A is supposed to choose m but would find it profitable to deviate to m′ to induce the lottery
following m′, a contradiction. By the same argument, if y, y′ ∈ Y with y < y′ are the support of
some induced lottery, y′ is not induced as a degenerate lottery.

Let Ỹ be the union of the supports of all induced lotteries following Y . We construct an
outcome-equivalent PBE where P chooses Ỹ instead of Y on the equilibrium path and A’s mes-
sage space is restricted to P ’s choice of set of decisions on and off the equilibrium path. For any
choice of P that is not Ỹ , including Y , let the continuation in the new PBE be such that A chooses
the lowest decision in the set chosen by P regardless of realized θ and P chooses a decision that
is optimal in the set given her prior belief. It remains to specify the continuation equilibrium in
the new PBE following Ỹ that is outcome equivalent to the continuation equilibrium in the origi-
nal PBE following Y . For each degenerate lottery y ∈ Y induced in the continuation equilibrium
following Y after A chooses some message m, let A choose y in the subgame following Ỹ and
let P ’s belief be the same as in the original PBE conditional on m; and for each non-degenerate
lottery where P randomizes between y and y′ with y < y′ following Y after A chooses some
message m′, let A choose y′ in the subgame following Ỹ and let P ’s belief be the same as in
the original PBE conditional on m′. All equilibrium conditions are satisfied in the new PBE fol-
lowing Ỹ as they are a subset of the equilibrium conditions in the original PBE following Y .
Further, by construction Ỹ is part of the new PBE, because Y is part of the original PBE, and the
equilibrium payoff for P is greater than or equal to the payoff from choosing yP . �

Second, we show that in any PBE the number of induced lotteries is finite. Denote {y, y′;w}
as a lottery induced in some continuation game after P has chosen Y , with P choosing y with
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probability w ∈ (0,1) and y′ � y with probability 1 − w. We adopt the convention that a de-
generate lottery is represented by y′ = y. The proof of Claim 1 implies that any two distinct
lotteries {y1, y

′
1;w1} and {y2, y

′
2;w2} can be ordered, with the first lower than the latter, such

that y1 � y′
1 � y2 � y′

2, with at least one strict inequality and y′
1 = y2 implying that y′

2 > y2.

Claim 2. The number of decisions induced in any PBE is finite.

Proof. Fix some PBE and the subgame after P has chosen the equilibrium Y . Let {yi, y
′
i;wi},

i = 1,2,3, be three distinct induced lotteries, in increasing order. Since both {y2, y
′
2;w2} and

{y3, y
′
3;w3} are induced, there is a state θ̂ such that

w2u
A(y2, θ̂ ) + (1 − w2)u

A
(
y′

2, θ̂
) = w3u

A(y3, θ̂ ) + (1 − w3)u
A
(
y′

3, θ̂
)
.

Since uA(·, θ̂ ) is strictly concave, yA(θ̂) ∈ (y2, y
′
3). Further, since uA

yθ > 0, the lottery

{y2, y
′
2;w2} is not induced for any θ > θ̂ , as

w3
(
uA(y3, θ) − uA(y3, θ̂ )

) + (1 − w3)
(
uA

(
y′

3, θ
) − uA

(
y′

3, θ̂
))

� uA(y3, θ) − uA(y3, θ̂ )

� uA
(
y′

2, θ
) − uA

(
y′

2, θ̂
)

� w2
(
uA(y2, θ) − uA(y2, θ̂ )

) + (1 − w2)
(
uA

(
y′

2, θ
) − uA

(
y′

2, θ̂
))

,

with at least one inequality being strict. This implies that {y2, y
′
2;w2} can only be induced if the

state θ is smaller than θ̂ . As a result, we have yP (θ̂) > y1; otherwise, since uP
yθ > 0, a similar

argument as above would imply that P prefers the lottery {y1, y
′
1;w1} to {y2, y

′
2;w2} for all θ < θ̂

but then {y2, y
′
2;w2} would never be induced. It then follows that y1 < yP (θ̂) < yA(θ̂) < y′

3.
Since yP (θ) < yA(θ) for all θ ∈ [0,1] and are both continuous, there exists ε > 0 such that
yA(θ) − yP (θ) � ε for all θ ∈ [0,1]. There can be at most one induced decision greater than
yP (1) and one lower than yP (0). The claim then follows immediately. �

By the first two claims, for any PBE, it is without loss of generality to assume that the equilib-
rium Y has a finite number of decisions, and each decision y ∈ Y is induced either in a degenerate
lottery or in a lottery with another decision y ′ ∈ Y . Denote the induced lotteries as {yi, y

′
i;wi},

i = 1, . . . , n, in increasing order. Since uA
yθ > 0, there is a partition {θi}ni=0 of the state space

[0,1], with θ0 = 0 and θn = 1, such that each {yi, y
′
i;wi}, i = 1, . . . , n, is induced in state

θ ∈ (θi−1, θi]. The necessary equilibrium conditions are A’s indifference conditions: for each
partition threshold θi , i = 1, . . . , n − 1,

wiu
A(yi, θi) + (1 − wi)u

A
(
y′
i , θi

) = wi+1u
A(yi+1, θi) + (1 − wi+1)u

A
(
y′
i+1, θi

); (15)

and P ’s incentive condition for each lottery {yi, y
′
i;wi}, i = 1, . . . , n,

θi∫
θi−1

(
wiu

P (yi, θ) + (1 − wi)u
P
(
y′
i , θ

))
f (θ) dθ �

θi∫
θi−1

uP (ỹ, θ)f (θ) dθ (16)

for ỹ = yj , y
′ and all j = 1, . . . , n. If in addition,
j
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n∑
i=1

θi∫
θi−1

(
wiu

P (yi, θ) + (1 − wi)u
P
(
y′
i , θ

))
f (θ) dθ �

1∫
0

uP
(
yP , θ

)
f (θ) dθ

so that P ’s expected payoff is greater than that from making an uninformed decision, then the
above necessary conditions are also sufficient for PBE.

Third, we simplify the incentive conditions for P .

Claim 3. In any PBE, P ’s incentive conditions (16) are all slack except for ỹ = y ′
i−1, yi, y

′
i , yi+1.

Further, if yi = y′
i for all i, then P ’s incentive conditions except for (3) are all slack.

Proof. We first argue that adjacent incentive conditions are sufficient for all incentive conditions.
Consider all P ’s incentive conditions for {yi, y

′
i;wi}. Since P prefers {yi, y

′
i;wi} to y′

i−1 condi-
tional on (θi−1, θi], the most preferred decision conditional on the interval is higher than y′

i−1.
By the strict concavity of uP , P strictly prefers y′

i−1, and hence {yi, y
′
i;wi}, to all decisions

lower than y′
i−1 conditional on (θi−1, θi]. By the same argument, P strictly prefers {yi, y

′
i;wi}

to all decisions higher than yi+1 conditional on (θi−1, θi].
Next, we argue that the adjacent upward incentive condition is satisfied if all induced lotteries

are degenerate. To see this, note that in any partition equilibrium A’s indifference conditions (2)
hold. Since uyβ > 0, A being indifferent between yi and yi+1 in state θi implies that P strictly
prefers yi to yi+1 in the same state. By uP

yθ > 0, P then prefers yi to yi+1 for all θ < θi , and in
particular, for any θ ∈ (θi−1, θi]. �

Fourth, we show that if an optimal PBE exists, then on the equilibrium path, P never random-
izes over the set of decisions.

Claim 4. For each PBE in which lotteries are induced, there exists another PBE in which only
degenerate lotteries are induced and P obtains a higher expected payoff.

Proof. Fix some PBE with induced lotteries {yi, y
′
i;wi}, i = 1, . . . , n, in increasing order. We

prove this claim in two steps. First, we show that there is another PBE in which P ’s equilibrium
choice of Y contains only y′

i , i = 1, . . . , n, and each decision y′
i is induced in a degenerate

lottery. Each new threshold θ̂i is given by (15) where wi and wi+1 are set to 0. Since yi �
y′
i � yi+1 � y′

i+1, the concavity of uA(·, θ̂i ) and A’s indifference condition at θ̂i between y′
i and

y′
i+1 imply that uA(yi, θ̂i ) � uA(y′

i , θ̂i ) and uA(yi+1, θ̂i ) � uA(y′
i+1, θ̂i ). Then, since uA

yθ > 0,
using the implicit function theorem applied to (15) gives that the solution to (15) decreases in wi

and wi+1, which implies that each new threshold θ̂i is higher than the original threshold θi . The
distribution function of the state θ conditional on [θ̂i−1, θ̂i], given by (F (θ)−F(θ̂i−1))/(F (θ̂i)−
F(θ̂i−1)), first order stochastically dominates the distribution function of the state θ conditional
on [θi−1, θi], because it is decreasing in θ̂i−1 and θ̂i . Since the difference uP (y′

i , θ)−uP (y′
i−1, θ)

is increasing in θ by the assumption of uP
yθ > 0, P prefers y′

i to y′
i−1 conditional on [θ̂i−1, θ̂i],

because in the original PBE, P prefers y′
i to y′

i−1 conditional on [θi−1, θi]. Since the downward
incentive conditions are satisfied, Claim 3 implies that we indeed constructed a new PBE.

Second, we show that P obtains a higher expected payoff in the new PBE than in the original
PBE by transforming the original PBE into the new PBE in such a way that P ’s expected payoff
continuously increases. We continuously decrease each lottery weight w̃i from wi to 0, one
lottery at a time starting at i = 1 and ending at i = n, while increasing thresholds θ̃i and θ̃i−1
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to always satisfy A’s indifference conditions (15). Note that all other partition thresholds are
unchanged when we continuously decrease w̃i alone. The partial derivative of P ’s expected
payoff with respect to w̃i is given by

θ̃i∫
θ̃i−1

(
uP (yi, θ) − uP

(
y′
i , θ

))
f (θ) dθ,

which is negative because P prefers y′
i to yi conditional on (θ̃i−1, θ̃i] (recall that P is indiffer-

ent between y′
i and yi conditional on (θi−1, θi], so the argument from the previous paragraph

applies). Thus, as we decrease w̃i continuously, the direct effect on P ’s expected payoff is posi-
tive. The partial derivative of P ’s expected payoff with respect to θ̃i is equal to f (θ̃i) multiplied
by

w̃iu
P (yi, θ̃i ) + (1 − w̃i)u

P
(
y′
i , θ̃i

) − (
wi+1u

P (yi+1, θ̃i ) + (1 − wi+1)u
P
(
y′
i+1, θ̃i

))
= w̃i

(
wi+1

(
uP (yi, θ̃i ) − uP (yi+1, θ̃i )

) + (1 − wi+1)
(
uP (yi, θ̃i ) − uP

(
y′
i+1, θ̃i

)))
+ (1 − w̃i)

(
wi+1

(
uP

(
y′
i , θ̃i

) − uP (yi+1, θ̃i )
)

+ (1 − wi+1)
(
uP

(
y′
i , θ̃i

) − uP
(
y′
i+1, θ̃i

)))
> w̃i

(
wi+1

(
uA(yi, θ̃i ) − uA(yi+1, θ̃i )

) + (1 − wi+1)
(
uA(yi, θ̃i ) − uA

(
y′
i+1, θ̃i

)))
+ (1 − w̃i)

(
wi+1

(
uA

(
y′
i , θ̃i

) − uA(yi+1, θ̃i )
)

+ (1 − wi+1)
(
uA

(
y′
i , θ̃i

) − uA
(
y′
i+1, θ̃i

)))
= w̃iu

A(yi, θ̃i ) + (1 − w̃i)u
A
(
y′
i , θ̃i

) − (
wi+1u

A(yi+1, θ̃i ) + (1 − wi+1)u
A
(
y′
i+1, θ̃i

))
= 0,

where the inequality follows from uyβ > 0, and the last equality follows from A’s indifference
condition between {yi, y

′
i; w̃i} and {yi+1, y

′
i+1;wi+1} in state θ̃i . Because we replace one lottery

at a time starting at i = 1, the lottery {yi−1, y
′
i−1;wi−1} must be degenerate. By construction

w̃i−1 = 0 when we decrease w̃i , so analogously the partial derivative of P ’s expected payoff
with respect to θ̃i−1 is equal to f (θ̃i−1) multiplied by

uP
(
y′
i−1, θ̃i−1

) − (
w̃iu

P (yi, θ̃i−1) + (1 − w̃i)u
P
(
y′
i , θ̃i−1

))
= w̃i

(
uP

(
y′
i−1, θ̃i−1

) − uP (yi, θ̃i−1)
) + (1 − w̃i)

(
uP

(
y′
i−1, θ̃i−1

) − uP
(
y′
i , θ̃i−1

))
> w̃i

(
uA

(
y′
i−1, θ̃i−1

) − uA(yi, θ̃i−1)
) + (1 − w̃i)

(
uA

(
y′
i−1, θ̃i−1

) − uA
(
y′
i , θ̃i−1

))
= uA

(
y′
i−1, θ̃i−1

) − (
w̃iu

A(yi, θ̃i−1) + (1 − w̃i)u
A
(
y′
i , θ̃i−1

))
= 0.

Thus, as we decrease w̃i continuously, the indirect effects of increased θ̃i−1 and θ̃i on P ’s ex-
pected payoff are also positive. Finally, if we suppose that at least one induced lottery in the
original PBE is non-degenerate, then the direct effect will be strictly positive, which implies that
P ’s expected payoff is strictly higher in the new PBE. �

Fifth and last, we show that an optimal PBE exists. Combining the above claims, we have
already established that an optimal PBE, if one exists, is a solution to the constrained maximiza-
tion problem where the objective is P ’s expected payoff and the feasible choices are all partition
equilibria with a finite number of elements.
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Claim 5. An optimal PBE exists.

Proof. Let us consider a relaxed problem in which strict inequalities of the partition condi-
tion (1) are replaced with weak inequalities. By Claim 2, the number of induced decisions n

is uniformly bounded. Thus, the relaxed problem is a constrained maximization problem with
finitely many variables. We claim that there exists y such that we can impose |yi | � y for all
i = 1, . . . , n without affecting the maximization problem. This follows because there can be
at most one induced decision above yP (1) and one induced decision below yP (0), and fur-
ther, there is at least one induced decision in [yP (0), yP (1)]. To see this, define g1(y2, θ1) as
y1 that solves uA(y1, θ1) = uA(y2, θ1) and gn(yn−1, θn−1) as yn that solves uA(yn−1, θn−1) =
uA(yn, θn−1). The functions g1 and gn are decreasing in the first argument and increasing in
the second argument which implies that y1 � g1(y

P (1),0) and yn � gn(y
P (0),1). Therefore,

|yi |� max{|g1(y
P (1),0)|, |gn(y

P (0),1)|} ≡ y for all i.
The constraints, |yi | � y, together with a finite number of constraints (2) and (3) de-

termine the compact set for variables {θi}ni=0, {yi}ni=1 over which the continuous function∑n
i=1

∫ θi

θi−1
uP (yi, θ)f (θ) dθ is maximized. Clearly, there exists a solution to this relaxed prob-

lem. Finally, we need to show that the value of the relaxed problem is achievable with strict
inequalities (1), which will prove the existence of an optimal PBE. If some of θi or yi coincide,
we can take the maximal subset {θ̃i}ñi=0 ⊂ {θi}ni=0 and a corresponding subset of induced deci-
sions {ỹi}ñi=1 ⊂ {yi}ni=1 such that all θ̃i and ỹi are distinct. These {θ̃i}ñi=0 and {ỹi}ñi=1 will satisfy
(2)–(3) and strict inequalities of the partition condition (1). Moreover, this modification does not
change P ’s expected payoff. �

This concludes the proof of Theorem 1. �
Proof of Proposition 1. Consider a CS equilibrium ({θi}ni=0, {yi}ni=1) with n � 2. We prove
that for any sufficiently small ε, there exists a PBE with P ’s equilibrium choice {ỹi}ni=1 ≡
{y1, . . . , yj + ε, . . . , yn}, and the corresponding partition {θ̃i}ni=0 ≡ {θ0, . . . , θj−1(ε), θj (ε), . . . ,

θn}. Moreover, we prove that P ’s expected payoff in this PBE is strictly higher than in the CS
equilibrium. By the implicit function theorem applied to A’s indifference condition (2), θj−1(ε)

and θj (ε) are continuous functions in a neighborhood of ε = 0 with

dθj−1(ε)

dε

∣∣∣∣
ε=0

= −uA
y (yj , θj−1)

uA
θ (yj , θj−1) − uA

θ (yj−1, θj−1)
for j �= 1,

dθj (ε)

dε

∣∣∣∣
ε=0

= uA
y (yj , θj )

uA
θ (yj+1, θj ) − uA

θ (yj , θj )
for j �= n.

For j = 1 and j = n, we have dθ0(ε)
dε

|ε=0 = dθn(ε)
dε

|ε=0 = 0 because θ0(ε) = 1 − θn(ε) = 0.

In the CS equilibrium,
∫ θi

θi−1
uP (yi, θ)f (θ) dθ >

∫ θi

θi−1
uP (yi−1, θ)f (θ) dθ for all i because

yi is ex post optimal in that yi = arg maxy∈R
∫ θi

θi−1
uP (y, θ)f (θ) dθ . Therefore, incentive con-

ditions (3),
∫ θ̃i

θ̃i−1
uP (ỹi , θ)f (θ) dθ >

∫ θ̃i

θ̃i−1
uP (ỹi−1, θ)f (θ) dθ , hold for all i because functions

uP (y, θ), θj−1(ε), θj (ε) are continuous, and ε is sufficiently small.
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The derivative of P ’s expected payoff with respect to ε at ε = 0 is given by(
uP (yj−1, θj−1) − uP (yj , θj−1)

)
f (θj−1)

dθj−1(ε)

dε

∣∣∣∣
ε=0

+ (
uP (yj , θj ) − uP (yj+1, θj )

)
f (θj )

dθj (ε)

dε

∣∣∣∣
ε=0

+
θj∫

θj−1

uP
y (yj , θ)f (θ) dθ.

The last term in the above expression is 0 because yj is ex post optimal. The second term
is positive for j �= n because uP (yj , θj ) − uP (yj+1, θj ) > 0 holds by (2) and uyβ > 0; and
dθj (ε)

dε
|ε=0 > 0 holds by uA

y (yj , θj ) > 0 and uA
θ (yj+1, θj ) − uA

θ (yj , θj ) > 0. More specifically,

uA
y (yj , θj ) > 0 holds by (2) and uA

yy > 0, whereas uA
θ (yj+1, θj ) − uA

θ (yj , θj ) > 0 holds by

uA
yθ > 0. Analogously, the first term is positive for j �= 1. To sum up, the above expression is

positive for all j . �
Proof of Proposition 2. For the ‘only if’ part, recall from Proposition 1 that any optimal PBE is
a partition equilibrium. The claim then follows immediately, because any partition equilibrium
can be implemented by delegation under full commitment.

For the ‘if’ part, we use a result obtained by Alonso and Matouschek [3]. They show that if
delegation is valuable then there exists θ∗ ∈ (0,1) such that S(θ∗) < 0 < T (θ∗), where T (θ∗) ≡∫ θ∗

0 (yA(θ∗)−yP (θ))f (θ) dθ and S(θ∗) ≡ ∫ 1
θ∗(yA(θ∗)−yP (θ))f (θ) dθ . The decision rule ỹ(θ)

given by

ỹ(θ) =
{

yA(θ∗) + T (θ∗) − S(θ∗) if θ > θ∗,
yA(θ∗) + S(θ∗) − T (θ∗) if θ � θ∗,

satisfies A’s indifference condition (2) at θ∗ because A’s payoff function is symmetric
around yA(θ∗). Moreover, the difference in P ’s expected payoff under ỹ(θ) and the uninfor-
mative decision yP is equal to −4T (θ∗)S(θ∗), and is positive. Finally, conditional on θ > θ∗,
P prefers yA(θ∗) + T (θ∗) − S(θ∗) to yA(θ∗) + S(θ∗) − T (θ∗), because the difference in her
expected payoff under the two decisions is −4(T (θ∗) − S(θ∗))S(θ∗), which is positive. Thus,
ỹ(θ) can be supported as a PBE. �
Proof of Lemma 1. Suppose that in the optimal PBE, yi � y∗

i for some i = 2, . . . , n. We first
show by contradiction that P ’s (i + 1)-th incentive condition binds. Suppose not. Consider
marginally increasing yi , keeping all other decisions unchanged. We know from the proof of
Proposition 1 that θi−1 and θi both increase, with all other thresholds unaffected. By the concav-
ity of uP (·, θ), P ’s i-th incentive condition is slack and hence unaffected because yi−1 < yi � y∗

i .
Similarly, her (i − 1)-th incentive condition remains satisfied because θi−1 increases as yi in-
creases. The proof of Proposition 1 has already established that P ’s expected payoff is increased
when either θi or θi−1 increases. Her expected payoff is further increased because yi moves
closer to her ex post optimal decision y∗

i on (θi, θi+1]. A contradiction.
The above result immediately implies that yn > y∗

n . For each i = 2, . . . , n − 2, note that P ’s
(i + 1)-th incentive condition binding implies that yi < y∗

i+1 < yi+1, so we can rewrite it as
yi+1 + yi = θi+1 + θi . Using (4) for θi and θi+1, we then have

yi+2 − yi = 4b.
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However, if yi � y∗
i , from A’s indifference conditions (4) we would have

yi+1 − yi � 4b + (yi − yi−1) > 4b,

which contradicts P ’s binding (i + 1)-th incentive condition. This establishes the lemma for
i = 2, . . . , n − 2.

Next, we show that yn−1 > y∗
n−1. Suppose not. Consider marginally increasing yn−1 and de-

creasing yn in such a way that θn−1 remains unchanged. Then P ’s n-th incentive condition is
unaffected. However, this increases P ’s expected payoff because by assumption yn−1 � y∗

n−1,
yn > y∗

n , and because θn−2 increases as a result of increasing yn−1. A contradiction.
Finally, it can be verified using the proof of Proposition 5 that y1 > y∗

1 at the optimal PBE.
Note that this result is not needed for rewriting P ’s incentive conditions (5). �
Proof of Proposition 3. Adding up condition (9) for i = 2, . . . , n − 1, we have

yn + yn−1 − (y1 + y2) � 4b(n − 2).

Also, using conditions (8) and (10), we have 2b(n − 1) < 1, or n < 1/(2b) + 1.
For the converse, let n be a natural number strictly less than 1/(2b) + 1. By definition of N ,

1/(2N) � b < 1/(2(N − 1)). Note that N � 2 because b < 1
2 by assumption.

If n = 1, then there exists a babbling equilibrium with the induced decision y1
1 = 1

2 .
If n = 2, consider the ‘full-commitment’ problem of choosing two decisions y1 and y2 with

0 � y1 � y2 � 1 that maximizes P ’s expected payoff

U2 = −
θ1∫

0

l
(|y1 − θ |)dθ −

1∫
θ1

l
(|y2 − θ |)dθ,

subject only to A’s indifference condition θ1 = 1
2 (y1 + y2) − b. The first order conditions with

respect to y1 and y2 are

∂U2

∂y1
= 1

2

[
l(y2 − θ1) + l

(|y1 − θ1|
)] − l(y1) = 0;

∂U2

∂y2
= −1

2

[
l(y2 − θ1) + l

(|y1 − θ1|
)] + l(1 − y2) = 0.

The above conditions imply that y1 = 1 − y2. It is straightforward to verify that the second order
condition is satisfied. The above first order conditions become identical, and we can rewrite it as

2l(1/2 − δ) = l(b + δ) + l
(|b − δ|),

where δ = 1
2 (y2 − y1). By the convexity of l, the right-hand side is increasing in δ, so there is a

unique δ2 ∈ (0,1/2) satisfying the above condition. The solution to the full-commitment problem
is then given by y2

1 = 1
2 − δ2 and y2

2 = 1
2 + δ2, with θ1 = 1

2 − b. Note that b < 1
2 implies that

θ1 > 0. The incentive condition of P is satisfied at this solution, because y2
1 + y2

2 = 1 < 1 + θ1.
We can thus take the solution to the full-commitment problem to be a limited authority PBE.
Since the solution has y2

2 − y2
1 = 2δ2 > 0, it gives P a strictly higher payoff than making the

uninformed decision of 1
2 .

Finally, for any n � 3, consider the set of n decisions Yn given by yn
i = 1

2 − b(n + 1 − 2i)

for each i = 1, . . . , n. Then, by A’s indifference condition, θi = yn for each i = 1, . . . , n − 1. It
i
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is straightforward to verify that conditions (8), (9) and (10) are all satisfied. The expected payoff
for P under this construction is given by

Un = −2

yn
1∫

0

l
(
yn

1 − θ
)
dθ − (n − 1)

yn
2∫

yn
1

l
(
yn

2 − θ
)
dθ. (17)

Since yn
2 = yn−2

1 by construction, it is straightforward to show that Un > Un−2: the difference is
given by

Un − Un−2 = 2

yn
1∫

0

[
l
(
yn

2 − θ
) − l

(
yn

1 − θ
)]

dθ,

which is positive.
The above argument immediately implies that the expected payoff to P under the above con-

struction with n decisions is greater than making the uninformed decision of 1
2 for all n � 3

and odd. To complete the proof of the proposition, we only need to show that the above con-
struction Y 4 for n = 4 is better than making the uninformed decision of 1

2 for P . (This step is
necessary because the payoff formula (17) does not apply to the case of n = 2.) It is straightfor-
ward to show that

1∫
0

l
(|1/2 − θ |)dθ −

4∑
i=1

θi∫
θi−1

l(yi − θ) dθ

>

[ y3+b∫
y3

l(θ − 1/2) dθ −
1/2∫

y2

l(y3 − θ) dθ

]
+

[ y3∫
1/2

(
l(θ − 1/2) − l(y3 − θ)

)
dθ

]

+
[ 1/2∫

y2

l(1/2 − θ) dθ −
y3+b∫
y3

l(θ − y3) dθ

]
= 0,

where the first line follows because 1
2 is a more extreme decision than the corresponding deci-

sions y1, y2 and y4 outside the interval [y2, y3 + b], and the second line follows because each
term in the bracket is zero. (One integral that appears in U(4) is

∫ y4
y3

l(y4 − θ) dθ , which is equal

to
∫ y4
y3

l(θ −y3) dθ by a change of variables; the first part of the latter integral, from y3 to y3 +b,
is the integral that appears in the last bracket.) �
Proof of Lemma 2. For n = 1, it is trivially true that y1

1 = 1
2 . For n = 2, Y 2 is derived in the

proof of Proposition 3. Fix any n � 3. Arguments similar to the proof of Claim 5 in Theorem 1
can show that Yn exists. We will guess and verify later that conditions (7), (8), and (11) are not
binding at Yn. Denote δi = 1

2 (yi+1 − yi).
The derivative of P ’s expected payoff with respect to yi is

∂Un

∂yi

= 1

2

[
l(yi+1 − θi) − l(yi − θi−1)

] − 1

2

[
l
(|yi−1 − θi−1|

) − l
(|yi − θi |

)]
= 1 [

l(δi + b) + l
(|δi − b|)] − 1 [

l(δi−1 + b) + l
(|δi−1 − b|)] (18)
2 2
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where we have used A’s indifference conditions. Since l is convex, the function l(b + δ) +
l(|b − δ|) is increasing in δ regardless of δ � b or δ < b. As a result, ∂Un/∂yi has the same sign
as δi − δi−1, implying that δi = δi−1 at the optimal decisions Yn.

Thus, the optimal decisions satisfy yi − yi−1 = 2δ > 0 for all i = 2, . . . , n, so the optimum is
interior. From A’s indifference conditions, we have θi − θi−1 = 2δ for all i = 2, . . . , n− 1. Since
the state is uniformly distributed, we can rewrite P ’s expected payoff as

Un = −
θ1∫

0

l
(|y1 − θ |)dθ − (n − 2)

θ2∫
θ1

l
(|y2 − θ |)dθ −

1∫
θn−1

l
(|yn − θ |)dθ. (19)

Now we differentiate (19) with respect to y1 and yn. From the two first order conditions we
immediately have l(y1) = l(1 − yn), and thus y1 = 1 − yn = 1

2 − (n − 1)δ. The two conditions
then become identical, and are given by

∂Un

∂y1
= 1

2

[
l(b + δ) + l

(|b − δ|)] − l
(
1/2 − (n − 1)δ

) = 0. (20)

We claim that there exists a unique δn ∈ (0,1/(2(n − 1))) that solves (20). Since l is convex,
∂Un/∂y1 is strictly increasing in δ regardless of whether δ � b or δ < b, so there can be at
most one value of δ that solves (20). At δ = 0, we have ∂Un/∂y1 < 0 because b < 1

2 ; and
at δ = 1/(2(n − 1)), we have ∂Un/∂y1 > 0. Thus, a unique δn ∈ (0,1/(2(n − 1))) exists that
solves (20). Condition (20) is a necessary condition for δn to be optimal. Since there exists a
unique solution δn, (20) is also sufficient.

To complete the derivation of Yn, we verify that the dropped constraints are satisfied. Condi-
tion (7) is satisfied because δn > 0. Condition (8) is equivalent to yn

1 > b − δn. This is satisfied if
δn � b since δn < 1/(2(n − 1)) implies that yn

1 > 0; it also holds if δn < b, because in that case
it is implied by (20). Finally, condition (11) is satisfied because yn

n = 1 − yn
1, yn

n−1 < yn
n, and

yn
1 > 0. �

Proof of Lemma 3. The lemma follows immediately from the three claims below.

Claim 6. P ’s incentive conditions (9) bind at Yn for b ∈ [bn, bn).

Proof. To get a contradiction, without loss of generality suppose that there exists i, i =
2, . . . , n − 2, such that yi+2 − yi = 4b and yi+1 − yi−1 > 4b at Yn. As in the proof of Lemma 2,
denote δi = 1

2 (yi+1 −yi). Below we derive a contradiction by changing some decision yk slightly
in such a way that all conditions (7)–(10) are still satisfied. We show that this change increases
P ’s expected payoff by condition (18), using the fact that the effect of the change has the same
sign as δk − δk−1.

To begin, note that each yk appears in at most two incentive conditions of P , the (k−1)-th and
the (k + 1)-th of (9). If δi � δi−1, which implies δi+1 < δi because by assumption δi+1 + δi =
2b < δi + δi−1, then we can decrease yi+1 slightly. If δi < δi−1, then there are two cases. If
i = 2 or yi − yi−2 > 4b, then we can decrease yi slightly; otherwise, if yi − yi−2 = 4b, which
implies that δi−1 > δi−2 because by assumption δi−1 > δi and δi−1 + δi > 2b, we can increase
yi−1 slightly. �
Claim 7. For any n� 3 and odd, and b ∈ (bn, bn), Yn is given by yn

i = 1
2 − (n + 1 − 2i)b for all

i = 1, . . . , n.
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Proof. By Claim 6, yi+2 − yi = 4b for all i = 1, . . . , n − 2. Then, yi = y1 + 2(i − 1)b for i odd,
and yi = y2 + 2(i − 2)b for i even. Further, θi − θi−1 = 2b for all i = 2, . . . , n − 1. Using the
assumption that the state is uniformly distributed, we can rewrite P ’s expected payoff (6) as

Un = −
θ1∫

0

l
(|y1 − θ |)dθ − n − 1

2

θ2∫
θ1

l
(|y2 − θ |)dθ

− n − 3

2

θ2∫
θ1

l
(|y1 + 2b − θ |)dθ −

1∫
θn−1

l
(|yn − θ |)dθ. (21)

The first order conditions with respect to y1 and y2 are

∂Un

∂y1
= −l(y1) + l(1 − yn) − n − 1

4

[
l(3b − δ1) − l(b + δ1)

] = 0;
∂Un

∂y2
= n − 1

4

[
l(3b − δ1) − l(b + δ1)

] = 0

where δ1 = 1
2 (y2 − y1). It follows immediately that y1 = 1 − yn and δ1 = b. Furthermore, it is

straightforward to verify that the second order condition with respect to y1 and y2 are satisfied
at y1 = 1 − yn and δ1 = b. Finally, (7) is satisfied because δ1 ∈ (0,2b), and (8) and (10) are
equivalent to 2(n − 1)b < 1, and thus are satisfied because b < bn. �
Claim 8. For any n � 2 and even, and b ∈ (bn, bn), Yn is given by yn

i = 1
2 − (n − 2i)b − δ1 for

odd i, and yn
i = 1

2 − (n + 2 − 2i)b + δ1 for even i, where δ1 < b is uniquely determined by (14).

Proof. Similar to Claim 7, we can rewrite P ’s expected payoff (6) as

Un = −
θ1∫

0

l
(|y1 − θ |)dθ − n − 2

2

θ2∫
θ1

l
(|y2 − θ |)dθ

− n − 2

2

θ2∫
θ1

l
(|y1 + 2b − θ |)dθ −

1∫
θn−1

l
(|yn − θ |)dθ. (22)

The first order conditions with respect to y1 and y2 are

−l(y1) + 1

2

[
l(b + δ1) + l

(|b − δ1|
)] − n − 2

4

[
l(3b − δ1) − l(b + δ1)

] = 0;

l(1 − yn) − 1

2

[
l(b + δ1) + l

(|b − δ1|
)] + n − 2

4

[
l(3b − δ1) − l(b + δ1)

] = 0

where δ1 = 1
2 (y2 −y1). It follows immediately that y1 = 1−yn and δ1 satisfies (14). Furthermore,

we can easily verify that the second order condition with respect to y1 and y2 are satisfied. Finally,
(7) is satisfied because δ1 ∈ (0,2b), and (8) and (10) are equivalent to 2(n − 1)b < 1, and thus
are satisfied because b < bn.

To see that there is a unique δn
1 ∈ (0, b) that satisfies (14), note that since b > bn, the left-hand

side of (14) is strictly smaller than the right-hand side at δ1 = b. As δ1 decreases, the left-hand
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side of (14) increases while the right-hand side decreases because l is convex. At δ1 = 0, the
left-hand side of (14) is strictly greater than the right-hand side because b < bn. It follows that
there exists a unique δn

1 ∈ (0, b) that satisfies condition (14). �
This concludes the proof of Lemma 3. �

Proof of Proposition 5. First we establish a series of claims.

Claim 9. For any l that satisfies Assumption 2, and for each n� 3, dUn(b)/db > dUn+1(b)/db

for all b ∈ (bn, bn+1).

Proof. First, we compute dUn(b)/db. For n odd, from (21), using the Envelope Theorem we
have

dUn(b)

db
= −2(n − 1)

[
l(2b) − l

(
yn

1

)]
. (23)

For n even, from (22) and the Envelope Theorem, we have

dUn(b)

db
= −(n − 2)l

(
3b − δn

1

) − nl
(
b + δn

1

) + 2(n − 1)l
(
yn

1

)
. (24)

Note that (24) becomes (23) when δn
1 is set to b.

Now, suppose that n is odd. Using the first order condition (14) for n + 1 we can rewrite (24)
for n + 1 as

dUn+1(b)

db
= −(n − 1)

[
l
(
3b − δn+1

1

) + l
(
b + δn+1

1

)] − 2l
(
b + δn+1

1

) + 2nl
(
yn+1

1

)
.

Since l is convex, we have

l
(
3b − δn+1

1

) + l
(
b + δn+1

1

)
> 2l(2b).

Further, (14) implies that l(b + δn+1
1 ) > l(yn+1

1 ). Thus,

dUn+1(b)

db
< −2(n − 1)

[
l(2b) − l

(
yn+1

1

)]
.

The claim then follows from yn+1
1 < 1

2 − (n − 1)b and (23).
Finally, suppose that n is even. Using the first order condition (14), we can rewrite (24) as

dUn(b)

db
= −(n + 1)

[
l
(
b + δn

1

) + l
(
b − δn

1

) − 2l
(
yn

1

)] − (n − 1)
[
l
(
b + δn

1

) − l
(
b − δn

1

)]
.

Since δn
1 < b, from (14) we have

l
(
b + δn

1

) + l
(
b − δn

1

) − 2l
(
yn

1

)
< l(2b) − 2l

(
1/2 − (n − 1)b

)
.

Thus

dUn(b)

db
> −(n + 1)

[
l(2b) − 2l

(
1/2 − (n − 1)b

)] − (n − 1)
[
l
(
b + δn

1

) − l
(
b − δn

1

)]
.

The claim then follows from δn
1 < b and (23) for n + 1. �
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Claim 10. Suppose that l(z) = (|z|)q with q > 1. For each n � 3, if Un−1(b) = Un(b) at some
b ∈ (bn, bn−1), then dUn−1(b)/db > dUn(b)/db.

Proof. First, we show that yn−1
1 > yn

1 for all b ∈ (bn, bn−1). From Lemma 2, we have that yn
1 is

decreasing in n for fixed b, regardless of whether δn � b or δn < b. Thus, for n odd,

yn−1
1 > yn

1 = 1

2
− (n − 1)δn >

1

2
− (n − 1)b = yn

1 ,

where the second inequality follows because δn < b for b > bn. For n even, we can also show
that yn

1 > yn
1 so that yn−1

1 > yn
1 . To see this, suppose instead that yn

1 � yn
1 . This implies that

δn
1 < δn because δn

1 < b. Then,

l
(
b + δn

1

) + l
(
b − δn

1

) − 2l
(
yn

1

)
< l

(
b + δn

) + l
(
b − δn

) − 2l
(
yn

1

) = 0

from the first order condition (20) in Lemma 2, which contradicts the first order condition (14)
in Lemma 3.

Second, using the assumption of l(z) = (|z|)q , we show that for all n, odd or even, and under
both Yn and Yn, P ’s expected payoff U(b) satisfies

dU(b)

db
= 1

b

[
(q + 1)U(b) + (y1)

q
]
, (25)

where y1 = yn
1 and y1 = yn

1 respectively, which then establishes the claim. Under Yn, the above
identity linking dUn(b)/db to Un(b) immediately follows from (23) for n odd and (24) for n

even. Under Yn, we need to compute dUn/db. For b < bn, from condition (13) we have δn given
in Lemma 2 is strictly greater than b. From (19), using the Envelope Theorem we have

dUn(b)

db
= −(n − 1)

[
l
(
δn + b

) − l
(
δn − b

)]
.

It is easy to verify (25) using l(z) = (|z|)q . �
Claim 11. Suppose that l(z) = (|z|)q with q > 1. Then, Un−1(bn−1) > Un(bn−1) for any n

sufficiently large.

Proof. From Lemma 2 and condition (13), at bn−1 all n − 1 decisions in Yn−1 are 2bn−1 apart,
that is, δ given in Lemma 2 is equal to bn−1. Further, from A’s indifference conditions we have
θi = yn−1

i for all i = 1, . . . , n − 2. We distinguish two cases.

First, suppose that n is odd. By Lemma 3, all n decisions in Yn are also 2bn−1 apart, with
θi = yn

i for all i = 1, . . . , n − 1. Note that yn−1
1 − yn

1 = bn−1. Using (19) and (21), we can show

that the difference between P ’s expected payoff Un−1 under Yn−1 and Un under Yn at bn−1 is
given by

Un−1(bn−1) − Un
(
bn−1) =

2bn−1∫
0

l(θ) dθ − 2

yn−1
1∫

yn−1
1 −bn−1

l(θ) dθ

>

2bn−1∫
l(θ) dθ − 2

yn−1
1∫

l(θ) dθ.
0 0
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Using the assumption of l(z) = (|z|)q with q > 1, we can explicitly compute yn−1
1 in terms of

bn−1 from (13), which does not depend on n directly, and use it to show that the last expression
above is strictly positive for any n. Note that this part of the proof holds for all n� 3 odd.

Second, suppose that n is even. In this case, under Yn we have θi+1 − θi = 2bn−1 and yn−1
1 −

yn
1 = δn

1 at bn−1. As in the case of odd n, using (19) and (22) we can show that the difference
between P ’s expected payoff Un−1 under Yn−1, and Un under Yn at bn−1 is

Un−1(bn−1) − Un
(
bn−1)

=
bn−1+δn

1∫
bn−1−δn

1

l(θ) dθ − 2

yn
1 +δn

1∫
yn

1

l(θ) dθ + n − 2

2

[ 3bn−1−δn
1∫

2bn−1

l(θ) dθ −
2bn−1∫

bn−1+δn
1

l(θ) dθ

]
.

Under the assumption of l(z) = (|z|)q with q > 1, we have

3bn−1−δn
1∫

2bn−1

l(θ) dθ −
2bn−1∫

bn−1+δn
1

l(θ) dθ

= 1

q + 1

[(
bn−1 − δn

1

)((
3bn−1 − δn

1

)q − (
bn−1 + δn

1

)q)
+ 2bn−1((3bn−1 − δn

1

)q + (
bn−1 + δn

1

)q − 2
(
2bn−1)q)]

.

Using conditions (13) and (14), we can rewrite the above payoff difference as

Un−1(bn−1) − Un
(
bn−1)

= 1

q + 1

[
2bn−1(bn−1 + δn

1

)q − yn−1
1

(
2bn−1)q + 2

(
yn

1

)q(
yn

1 − (
bn−1 − δn

1

))
+ (n − 2)bn−1((3bn−1 − δn

1

)q + (
bn−1 + δn

1

)q − 2
(
2bn−1)q)]

>
1

q + 1

[
2bn−1(bn−1 + δn

1

)q − yn−1
1

(
2bn−1)q]

.

Note that the right-hand side of the above inequality does not depend on n directly. Using the
assumption of l(z) = (|z|)q with q > 1, we can explicitly compute yn−1

1 in terms of bn−1 from

(13) and use it to show that the last expression above is strictly positive if δn
1/bn−1 is sufficiently

close to 1. The desired claim then follows from the observation that under the assumption of
l(z) = (|z|)q with q > 1, because yn

1 = yn−1
1 − δn

1 and yn−1
1 does not depend on n directly,

condition (14) implies that δn
1/bn−1 is strictly increasing in n and approaches 1 when n becomes

arbitrarily large. �
Now, observe that Yn = Yn at b = bn, and recall from Lemma 2 that Un(b) > Un−1(b).

Then, from Claim 10 and Claim 11, we have that for any n sufficiently large, there exists bn,n−1

such that Un−1(b) < Un(b) for b ∈ (bn, bn,n−1) and Un−1(b) > Un(b) for b ∈ (bn,n−1, bn−1].
Next, for any n sufficiently large, since Claim 11 implies that Un(bn) = Un(bn) > Un+1(bn), it
follows from Claim 9 that Un(b) > Un+1(b) for all b ∈ [bn, bn+1]. This concludes the proof of
Proposition 5. �
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Proof of Corollary 1. In the proof of Proposition 5, under the assumption of l(z) = z2, Claim 11
holds for any n � 3. From Claim 11 in the proof of Proposition 5 we have that Un−1(bn−1) >

Un(bn−1) for any n � 3 odd. For n even, using the assumption of l(z) = z2 we can explicitly
compute δn

1 and use it to show that Un−1(bn−1) > Un(bn−1) for any n. Further, we can easily
show that for any n� 3, even or odd, Un(bn+1) > Un−1(bn+1) where Un is P ’s expected payoff
under Yn = { 1

2 − (n + 1 − 2i)b}ni=1. Since Un � Un by the definition of Yn, from Claim 10 we
have bn,n−1 > bn+1. �
Proof of Proposition 6. First, consider optimal limited authority. By Proposition 5, for large n,
P ’s expected payoff (6) is bounded from below by Un−1 and from above by Un, where n satisfies
b ∈ [bn, bn−1). Since bn ∈ (bn+2, bn+1), we have

1

2b
− 1 < n <

1

2b
.

Since l is convex and increasing, δn−1 ∈ (b, b(n − 1)/(n − 2)) and δn ∈ (b(n − 2)/(n − 1), b].
To see this, note that if δn−1 � b(n − 1)/(n − 2), then

2l
(
1/2 − (n − 1)b

)
� 2l

(
1/2 − (n − 2)δn−1) = l

(
b + δn−1) + l

(
δn−1 − b

)
> l(2b),

contradicting b � bn. Similarly, if δn � b(n − 2)/(n − 1), then

2l
(
1/2 − (n − 2)b

)
� 2l

(
1/2 − (n − 1)δn

) = l
(
b + δn

) + l
(
b − δn

)
< l(2b),

contradicting b < bn−1. Further,

b < yn
1 < yn−1

1 <
1

2
− (n − 1)b < 2b.

To sum up, for k = n,n − 1, yk
1 = O(b), b + δk = 2b + o(b), |b − δk| = o(b), and k = 1/(2b) +

o(1/b). Thus, P ’s expected payoff under Y k is

Uk = − 1

q + 1

(
2
(
yk

1

)q+1 + (k − 1)
((

b + δk
)q+1 + sign

(
δk − b

) · (∣∣δk − b
∣∣)q+1))

= − 2q

q + 1
bq + o

(
bq

)
.

Second, we claim that the optimal delegation set is [b,1 − b], so P ’s expected payoff is

−(1 − 2b)bq − 2

b∫
0

θq dθ = −bq + o
(
bq

)
.

If the optimal delegation set is not an interval, then there exists x ∈ [0,1] and ξ > 0 such that
states θ ∈ (max{0, x − ξ}, x) induce x +b− ξ , and states θ ∈ (x,min{x + ξ,1}) induce x +b+ ξ

as Melumad and Shibano [30] show. If x − ξ < 0, then we can modify the delegation set such
that states θ ∈ (0, x + ε) induce x + b − ξ + 2ε and states θ ∈ (x + ε,min{x + ξ,1}) induce
x + b + ξ . This modification increases P ’s expected payoff because its derivative with respect
to ε at ε = 0 is

l(b + ξ) + l(b − ξ) − 2l(b + x − ξ) > l(b + ξ) + l(b − ξ) − 2l(b) > 0
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by convexity of l. If x − ξ � 0, then we can do the same modification with the exception that
states θ ∈ (x − ξ, x − ξ + 2ε) induce θ + b. Similarly, this modification increases P ’s expected
payoff because its derivative with respect to ε at ε = 0 is

l(b + ξ) + l(b − ξ) − 2l(b) > 0.

Knowing that the optimal delegation set is an interval, it is easy to show that it must be [b,1 − b]
by maximizing P ’s expected payoff with respect to the endpoints of the interval.

Third, CS show that under cheap talk, there are

N(b) =
⌊
−1

2
+ 1

2

√
1 + 2

b

⌋
induced decisions with

θi − θi−1 = 1

N(b)
+ 2b

(
2i − N(b) − 1

)
,

so P ’s expected payoff is

−
N(b)∑
i=1

θi∫
θi−1

(
θ − θi + θi−1

2

)q

dθ = −
N(b)∑
i=1

(θi − θi−1)
q+1

(q + 1)2q
.

Note that the sum
∑N(b)

i=1 g(i) can be bounded above by
∫ N(b)+1

1 g(i) di and below by∫ N(b)

0 g(i) di if g is increasing in i. Since, N(b) = 1/
√

2b + O(1) and θi − θi−1 is increas-
ing in i, we have that P ’s expected payoff under cheap talk is

−(2b)
q
2

2

(q + 1)(q + 2)
+ o

(
b

q
2
)
. �

Proof of Proposition 7. By Proposition 5, for any fixed q > 1 and b ∈ (0,1/2), P ’s expected
payoff (6) under limited authority is bounded from below by Un−1 and from above by Un+1,
where n� 3 satisfies b ∈ [bn, bn−1). Recall that Y 2 satisfies P ’s incentive condition for all b < 1

2 ,
so we set b2 = 1

2 . P ’s expected payoff under full delegation is simply −bq .
Consider first the limit case of q = 1. Using Lemma 2, we can easily verify that bn = 1/(2n)

for each n � 3. Fix any n � 4 and any b ∈ [bn, bn−1). By Lemma 2, δn−1 = 1/(2(n − 1)), and
thus from Eq. (19) we have

Un−1(b) = − 1

4(n − 1)
− (n − 2)b2.

It follows immediately that Un−1(b) > −b. For any b ∈ [b3,1/2), Y 2 is given in the proof of
Proposition 3. Using q = 1, we can easily verify that for b ∈ [b3,1/4), δ2 = 1

4 and

U2(b) = −1

8
− b2;

and for b ∈ [1/4,1/2), δ2 = 1
2 − b and

U2(b) = −b + b2.

It can be easily verified that U2(b) > −b for all b ∈ [b3,1/2). By continuity, for any b ∈ (0,1/2),
limited authority is better than full delegation when q is sufficiently close to 1.
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Next, for any q > 1 and b ∈ (bn, bn−1], from Lemma 2 we have δn+1 ∈ (b(n − 2)/n, b). To
see this, note that δn+1 < b follows because b > bn+1; and if δn+1 � b(n− 2)/n, we would have

2l
(
1/2 − (n − 2)b

)
� 2l

(
1/2 − nδn+1) = l

(
b + δn+1) + l

(
b − δn+1) < l(2b),

contradicting that b � bn−1. Then, from Eq. (19) we have

Un+1(b) = − 1

q + 1

[
2
(
yn+1

1

)q+1 + n
((

b + δn+1)q+1 − (
b − δn+1)q+1)]

.

Since δn+1 > b(n − 2)/n, we have

Un+1(b) < −nbq+1

q + 1

[(
2(n − 1)

n

)q+1

−
(

2

n

)q+1]
.

Thus, for sufficiently large q , we have Un+1(b) < −bq . Thus, for any b ∈ (0,1/2), full delegation
is better than limited authority when q is sufficiently large.

Finally, we show that P ’s expected payoff difference under the optimal limited authority and
under full delegation is single-crossing in q for any b ∈ (0,1/2). Fix any q > 1. Under the
optimal limited authority Y = {yn

i }ni=1, the expected payoff of P can be written as −E[zq ] where
the random variable z is given by

∑n
i=1 |yn

i − θ | · 1(θi−1,θi ](θ) where 1(θi−1,θi ](θ) is the indicator
function of the subset (θi−1, θi] and θ is uniformly distributed on (0,1]. Suppose that E[zq ] � bq

so that limited authority is weakly better than full delegation. For any q ′ < q , P ’s expected
payoff under the corresponding optimal limited authority is weakly greater than −E[zq ′ ], because
Y = {yn

i }ni=1 is weakly suboptimal when the power of the loss function is q ′. Then,

E
[
zq ′] = E

[(
zq

)q ′/q]
<

(
E

[
zq

])q ′/q �
(
bq

)q ′/q = bq ′
,

where the first inequality holds by the strong version of Jensen’s inequality because q ′ < q and z

is not a degenerate lottery, and the second holds by assumption. Thus, optimal limited authority
is better than full delegation at q ′ < q . �
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