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Sender, who is either good or bad, wishes to look good at an exogenous deadline. Sender privately
observes if and when she can release a public flow of information about her private type. Releasing
information earlier exposes to greater scrutiny, but signals credibility. In equilibrium bad Sender releases
information later than good Sender. We find empirical support for the dynamic predictions of our model
using data on the timing of U.S. presidential scandals and U.S. initial public offerings. In the context
of elections, our results suggest that October Surprises are driven by the strategic behaviour of bad
Sender.
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1. INTRODUCTION

Election campaigns consist of promises, allegations, and scandals. While most of them are
inconsequential, some are pivotal events that can sway elections. Rather than settling existing
issues, these bombshells typically start new debates that, in time, provide voters with new
information. When bombshells are dropped, their timing is hotly debated. Was the bombshell
intentionally timed to sway the election? What else did media and politicians know, when they
dropped the bombshell, that voters might only discover after the election?

The 2016 U.S. presidential campaign between Democrat Hillary Clinton and Republican
Donald Trump provides several examples. Just eleven days before the election, FBI director
James Comey announced that his agency was reopening its investigation into Secretary
Clinton’s emails. The announcement reignited claims that Clinton was not fit to be commander
in chief because of her mishandling of classified information. Paul Ryan, the Republican
Speaker of the House, went as far as to demand an end to classified intelligence briefings
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to Clinton. Some commentators maintain that Comey’s announcement cost Clinton the
election.!

While the announcement conveyed the impression of an emerging scandal, Clinton was
confident that no actual wrongdoing would be revealed by the new investigation —there would
be no real scandal. Comey’s letter to Congress stated that “the FBI cannot yet assess whether or
not this material may be significant, and I cannot predict how long it will take us to complete
this additional work”. The Clinton campaign—and Democrats generally—were furious, accusing
Comey of interfering with the election. Comey wrote that he was briefed on the new material
only the day before the announcement. But his critics maintained that the FBI had accessed the
new emails weeks before the announcement and speculated about how long Comey sat on the
new material and what he knew about it.>

Similarly, one month before the election, the Washington Post released a video featuring
Donald Trump talking disparagingly about women.® The video triggered a heated public debate
about whether Trump was fit to be president. It revived allegations that he had assaulted women
and even prominent Republicans called for Trump to end his campaign.* Within a week of the
video’s release, five women came forward accusing Trump of sexual assault. Trump himself
denied all accusations and dismissed the video as “locker-room banter”, and “nothing more than
a distraction from the important issues we are facing today.” Others echoed his statement that
real scandals are about “actions” and not “words”, and took the media coverage of the video as
proof of a conspiracy against Trump.°

The concentration of scandals in the last months of the 2016 campaign is far from an exception.
Such October surprises are commonplace in U.S. presidential elections, as shown in Figure 1.
Political commentators argue that such bombshells may be strategically dropped close to elections
so that voters have not enough time to tell real from fake news. Yet, if all fake news were released
just before an election, then voters may rationally discount October surprises as fake. Voters may
not do so fully, however, since while some bombshells may be strategically timed, others are
simply discovered close to the election.

Therefore, the strategic decision of when to drop a bombshell is driven by a trade-off between
credibility and scrutiny. On the one hand, dropping the bombshell earlier is more credible, in
that it signals that its sender has nothing to hide. On the other hand, it exposes the bombshell to
scrutiny for a longer period of time—possibly revealing that the bombshell is a fake.

This credibility-scrutiny trade-off also drives the timing of announcements about candidacy,
running mates, cabinet members, and details of policy platforms. An early announcement exposes
the background of the candidate or her team to more scrutiny, but boosts credibility. The same
trade-off is likely to drive the timing of information release in other contexts outside the political
sphere. For instance, a firm going public can provide a longer or shorter time for the market
to evaluate its prospectus before the firm’s shares are traded. This time can be dictated by the
firm’s liquidity needs and development plans, but can also be chosen strategically to influence the
market. A longer time allows the market to learn more about the firm’s prospective performance.
Therefore, the market perceives a longer time as a signal of the firm’s credibility, increasing the

1. For example, Paul Krugman wrote that the announcement “very probably installed Donald Trump in the White
House” (New York Times, January 13, 2017).

2. Matt Zapotosky, Ellen Nakashima, and Rosalind S. Helderman, Washington Post, October 30, 2016.

3. Although the video was filmed eleven years prior to the release, raising the question of whether it was strategically
timed, the Washington Post maintains it obtained the unedited video only a few hours before its online release (Farhi,
Paul, Washington Post, October 7, 2016).

4. Aaron Blake, Washington Post, October 9, 2016.

5. Los Angeles Times, transcript of Trump’s video statement, October 7, 2016.

6. Susan Page and Karina Shedrofsky, USA TODAY, October 26, 2016
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FIGURE 1
Distribution of scandals implicating U.S. presidents running up for reelection, from 1977 to 2008. Data from Nyhan
(2015).

share price. But a longer time also exposes the firm to more scrutiny, possibly revealing that the
firm’s future profitability is low.

In all these situations, (1) an interested party has private information and (2) she cares about
the public opinion at a given date. Crucially, (3) she can partially control how much time the
public has to learn about her information. In this article we introduce a Sender-Receiver model of
these dynamic information release problems. In our benchmark model of Section 2, (1) Sender
privately knows her binary type, good or bad, and (2) wants Receiver to believe that she is good
at an exogenous deadline; (3) Sender privately observes whether and when an opportunity to start
a public flow of information about her type arrives and chooses when to exercise this opportunity.
We call this opportunity an arm and say that Sender chooses when to pull the arm.”

In Section 3.1, we characterize the set of perfect Bayesian equilibria. Intuitively, bad Sender
is willing to endure more scrutiny only if pulling the arm earlier boosts her credibility in the sense
that Receiver holds a higher belief that Sender is good if the arm is pulled earlier. Therefore,
bad Sender withholds the arm with strictly positive probability. Our main result is that, in all
equilibria, bad Sender pulls the arm later than good Sender in the likelihood ratio order.

We prove that there exists an essentially unique divine equilibrium (Cho and Kreps, 1987).8
In this equilibrium, good Sender immediately pulls the arm when it arrives and bad Sender is
indifferent between pulling the arm at any time and not pulling it at all. Uniqueness allows us
to analyse comparative statics in a tractable way in a special case of our model where the arm
arrives according to a Poisson process and pulling the arm starts an exponential learning process
in the sense of Keller et al. (2005).

We do this in Section 4 and show that the comparative static properties of this equilibrium are
very intuitive. Both good and bad Sender gain from a higher Receiver’s prior belief that Sender

7. In Section 3.2, we generalize the model in several directions allowing for more general utility functions, for
Sender to be imperfectly informed, for Sender’s type to affect when the arm arrives, and for the deadline to be stochastic.

8. The equilibrium is essentially unique in the sense that the probability with which each type of Sender pulls the
arm at any time is uniquely determined.
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is good. Instead, whereas good Sender gains from a faster learning process and a faster arrival of
the arm, bad Sender loses from these.

When learning is faster and when the arm arrives more slowly, bad Sender delays pulling the
arm for longer and pulls it with lower probability. In this case, the total probability that (good
and bad) Sender pulls the arm is also lower. When Receiver’s prior belief is higher, withholding
information is less damning, so bad Sender strategically pulls the arm with lower probability, but
the probability that good Sender pulls the arm is mechanically higher. We show that the strategic
effect dominates the mechanical effect if and only if Receiver’s prior belief is sufficiently low.

We show that the probability density with which bad Sender pulls the arm is single-peaked
in time, and derive the conditions under which it monotonically increases with time. We also
characterize the shape of the probability density with which (good and bad) Sender pulls the arm,
and show it has at most two peaks—an earlier peak driven by good Sender and a later peak driven
by bad Sender.

In Section 5, we apply our model to the strategic release of political scandals in U.S.
presidential campaigns. In equilibrium, while real scandals are released as they are discovered,
fake scandals are strategically delayed and concentrated towards the end of the campaign. In other
words, our credibility-scrutiny trade-off predicts that the October surprise phenomenon is driven
by fake scandals. Using data from Nyhan (2015), we find empirical support for this prediction. To
the best of our knowledge, this is the first empirical evidence about the strategic timing of political
scandals relative to the date of elections and the first direct evidence of an October Surprise effect.

Finally, we apply our model to the timing of U.S. initial public offerings (IPOs). Our model
links a stock’s long-run performance to the time gap between the announcement of an IPO and
the initial trade date. Firms with higher long-run returns should choose longer time gaps in the
likelihood ratio order. Using an approach developed by Dardanoni and Forcina (1998), we find
empirical support for this prediction.

Related Literature. Grossman and Hart (1980), Grossman (1981), and Milgrom (1981)
pioneered the study of verifiable information disclosure and established the unraveling result: if
Sender’s preferences are common knowledge and monotonic in Receiver’s action (for all types
of Sender) then Receiver learns Sender’s type in any sequential equilibrium. Dye (1985) first
pointed out that the unraveling result fails if Receiver is uncertain about Sender’s information
endowment.? When Sender does not disclose information, Receiver is unsure as to why, and thus
cannot conclude that the non-disclosure was strategic, and hence does not “assume the worst”
about Sender’s type.

Acharya et al. (2011) and Guttman et al. (2013) explore the strategic timing of information
disclosure in a dynamic version of Dye (1985).!° Acharya et al. (2011) focus on the interaction
between the timing of disclosure of private information relative to the arrival of external news,
and clustering of the timing of announcements across firms. Guttman et al. (2013) analyse a
setting with two periods and two signals and show that, in equilibrium, both what is disclosed
and when it is disclosed matters. Strikingly, the authors show that later disclosures are received
more positively.

9. See also Jung and Kwon (1988), Shin (1994), and Dziuda (2011). The unraveling result might also fail if
disclosure is costly (Jovanovic, 1982) or information acquisition is costly (Shavell, 1994).

10. Shin (2003, 2006) also studies dynamic verifiable information disclosure, but he does not allow Sender to
choose when to disclose. A series of recent papers consider dynamic information disclosure with different focuses to us,
including: Ely et al. (2015); Ely (2016); Grenadier et al. (2016); Horner and Skrzypacz (2016); Bizzotto et al. (2017);
Che and Horner (2017); Orlov et al. (2017).
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All these models are unsuited to study either the credibility or the scrutiny sides of our trade-
off, because information in these models is verified instantly and with certainty once disclosed.
In our motivating examples, information is not immediately verifiable: when Sender releases the
information, Receiver only knows that “time will tell” whether the information released is reliable.
To capture this notion of partial verifiability, we model information as being verified stochastically
over time in the sense that releasing information starts a learning process for Receiver akin to
processes in Bolton and Harris (1999), Keller ef al. (2005). In Brocas and Carrillo (2007), an
uninformed Sender, wishing to influence Receiver’s beliefs, chooses when to stop a public learning
process.!! In contrast, in our model Sender is privately informed and she chooses when to start
rather than stop the process.'?

Our application to U.S. presidential scandals also contributes to the literature on the
effect of biased media and campaigns on voters’ behaviour (e.g. Mullainathan and Shleifer,
2005; Gentzkow and Shapiro, 2006; Duggan and Martinelli, 2011; Li and Li, 2013).13
DellaVigna and Kaplan (2007) provide evidence that biased media have a significant effect on
the vote share in U.S. presidential elections. We focus on when a biased source chooses to release
information and show that voters respond differently to information released at different times in
the election campaign.

2. THE MODEL

In our model, Sender’s payoff depends on Receiver’s posterior belief about Sender’s type at a
deadline. We begin with a benchmark model in which (1) Sender’s payoff is equal to Receiver’s
posterior belief, (2) Sender is perfectly informed, (3) Sender’s type does not affect when the arm
arrives, and (4) the deadline is deterministic. Section 3.2 relaxes each of these assumptions and
shows that our main results continue to hold.

2.1.  Benchmark model

There are two players: Sender (she) and Receiver (he). Sender is one of two types 8 € {G, B}:
good (8 =G) or bad (6 =B). Let w € (0, 1) be the common prior belief that Sender is good.

Time is discrete and indexed by r € {1,2, ..., T 4 1}. Sender is concerned about being perceived
as good atadeadline s =T. In particular, the expected payoff of type 6 € {G, B} is given by vg (s) =s,
where s is Receiver’s posterior belief at =T that 6 =G. Time 7+ 1 combines all future dates
after the deadline, including never.

An arm arrives to Sender at a random time according to distribution F with support
{1,2,...,T+1}. If the arm has arrived, Sender privately observes her type and can pull the arm
immediately or at any time after its arrival, including time 7+ 1. Because Sender moves only
after the arrival of the arm, it is immaterial for the analysis whether Sender learns her type when
the arm arrives or when the game starts.

11. Brocas and Carrillo (2007) also show that if the learning process is privately observed by Sender but the stopping
time is observed by Receiver, then in equilibrium Receiver learns Sender’s information (akin to the unraveling result), as
if the learning process was public. Gentzkow and Kamenica (2017) generalize this result.

12. In our model Sender can influence only the starting time of the experimentation process, but not the design of
the process itself. Instead, in the Bayesian persuasion literature (e.g. Rayo and Segal, 2010; Kamenica and Gentzkow,
2011), Sender fully controls the design of the experimentation process.

13. See also Prat and Stromberg (2013) for a review of this literature in the broader context of the relationship
between media and politics.
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Pulling the arm starts a learning process for Receiver. Specifically, if the arm is pulled at a
time t before the deadline (tr <T'), Receiver observes realizations of a stochastic process

L={Ly(t;7),T<t<T}.

The process L can be viewed as a sequence of signals, one per each time from t to 7 with the
precision of the signal at time ¢ possibly depending on 7, ¢, and all previous signals. Notice that
if the arm is pulled at T =T, Receiver observes the realization Ly (T, T') before taking his action.
For notational convenience, we assume that L is either discrete or atomless.

It is more convenient to work directly with the distribution of beliefs induced by the process L
rather than with the process itself. Recall that s is Receiver’s posterior belief that Sender is good
after observing all realizations of the process from 7 to 7. Let m denote Receiver’s interim belief
that Sender is good upon observing that she pulls the arm at time 7 and before observing any
realization of L. Given t and m, the process L generates a distribution H (.| t,m) over Receiver’s
posterior beliefs s; given 7, m, and 6, the process L generates a distribution Hy (.| 7,m) over s.
Notice that if the arm is pulled after the deadline (t =7+ 1), then the distributions Hp (.| t,m)
and H (.| t,m) assign probability one to s=m.

Assumption 1 says that (1) pulling the arm later reveals strictly less information about Sender’s
type in Blackwell (1953)’s sense and (2) the learning process never fully reveals Sender’s type.

Assumption 1. (1) For all T,7' €{1,2,...,T+1} such that T <1/, H(.|t,7) is a strict mean-
preserving spread ofH(. | t’,n). (2) The support of H(.|1,m) is a subset of (0, 1).

For example, consider a set of (imperfectly informative) signals S with some joint distribution
and suppose that pulling the arm at 7 reveals to Receiver a set of signals S; CS. Assumption 1
holds whenever S, is a proper subset of Sy for all T <7’.

We characterize the set of perfect Bayesian equilibria, henceforth equilibria. Let u(t) be
Receiver’s equilibrium interim belief that Sender is good given that Sender pulls the arm at
time v €{1,2,...,T+1}. Also, let Py denote an equilibrium distribution of pulling time t given
Sender’s type 6 (with the convention that Pg (0) =0).

2.2.  Discussion

We now pause to interpret key ingredients of our model using our main application—the timing of
U.S. presidential scandals in the lead-up to elections. Receiver is the median voter and Sender is an
opposition member or organization wishing to reduce a candidate’s chances of being elected. The
candidate is either fit (9 = B) or unfit (6 = G) to run the country. The prior belief that the candidate
is unfit is 7. At a random time, the opposition may privately receive scandalous material against
the candidate (arrival of the arm). The opposition can choose when and whether to release the
material (pull the arm). After it is released, the material is subject to scrutiny, and the median
voter gradually learns about the candidate’s type. Crucially, the opposition has private information
about what the expected outcome of scrutiny is. We say that the scandal is real (fake) if further
scrutiny is likely to reveal that the candidate is unfit (fit) to run the country. If, at the time of the
election (deadline), the median voter believes that the candidate is likely to be unfit to run the
country, the candidate’s chances of being elected are weak.

Notice that releasing a scandal might backfire. For example, before the FBI reopened its
investigation over Secretary Clinton’s emails, the median U.S. voter had some belief 7 that
Secretary Clinton had grossly mishandled classified information and was therefore unfit to be
commander in chief. Further investigations could have revealed that her conduct was more than
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a mere procedural mistake. In this case, the median voter’s posterior belief s would have been
higher than 7. On the contrary, the FBI might not have found any evidence of misconduct, despite
investigating yet more emails. In this case, the median voter’s posterior belief s would have been
lower than 7.

In this application, Sender’s payoff depends on Receiver’s belief at the deadline because this
belief affects the probability that the median voter elects the candidate. Specifically, suppose
that the opposition is uncertain about the ideological position r of the median voter, which is
uniformly distributed on the unit interval. If the candidate is not elected, the median voter’s
payoff is normalized to 0. If the incumbent is elected, the median voter with position » gets
payoff r—1 if the candidate is unfit and payoff r otherwise. The opposition gets payoff O if the
candidate is elected and 1 otherwise. Therefore, Sender’s expected payoff is given by

vg (s) =Pr(r <s)=s for 6 €{G,B}.
Furthermore, Receiver’s expected payoff u(s) is given by

: g2
M(S)Z/ [s(r—l)-l-(l—s)r]drz(1 2s) ]

The Receiver’s ex-ante expected payoff is therefore given by

(1—E[s])2+E[(s—IE[s])2] (1724 Var[s]

Efu(s)]= 2 2

ey

3. ANALYSIS
3.1. Equilibrium

We begin our analysis by deriving statistical properties of the model that rely only on players being
Bayesian. These properties link the pulling time and Receiver’s interim belief to the expectation of
Receiver’s posterior belief. First, from (good and bad) Sender’s perspective, keeping the pulling
time constant, a higher interim belief results in a higher expected posterior belief. Furthermore,
pulling the arm earlier reveals more information about Sender’s type. Therefore, from bad (good)
Sender’s perspective, pulling the arm earlier decreases (increases) the expected posterior belief
that Sender is good. In short, Lemma 1 says that credibility is beneficial for both types of Sender,
whereas scrutiny is detrimental for bad Sender but beneficial for good Sender.

Lemma 1. (Statistical Properties). Let E[s|t,m,0] be the expectation of Receiver’s posterior
belief s conditional on the pulling time t, Receiver’s interim belief m, and Sender’s type 6. For
all t,7'€{l,...,T+1} such that T <t', and all m,m’ € (0,1] such that m <m’,

(1) Els|t,m',0|>E[s|t,m,0] for 0 €{G,B};
(2) E|s|t/,m,B|>E[s|t,m,B];
(3) Els|t,m,G]>E[s|t/,m,G].

Proof. In Appendix A. ||

We now show that in any equilibrium, (1) good Sender strictly prefers to pull the arm whenever
bad Sender weakly prefers to do so, and therefore (2) if the arm has arrived, good Sender pulls it
with certainty whenever bad Sender pulls it with positive probability.
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Lemma 2. (Good Sender’s Behaviour). In any equilibrium:

(1) Forallt,7' €{l,....,T+1} suchthatt <7’ and u(t), (') € (0, 1), if bad Sender weakly
prefers to pull the arm at T than at T/, then (1) > (t’ ) and good Sender strictly prefers
to pull the arm at T than at T';

(2) Forall te{l,...,T} in the support of Pg, we have Pg(t)=F (7).

Proof. In Appendix B. ||

The proof relies on the three statistical properties from Lemma 1. The key to Lemma 2 is that if
bad Sender weakly prefers to pull the arm at some time t than at 7’ > 7, then Receiver’s interim
belief 1 (t) must be greater than u(r’ ) Intuitively, bad Sender is willing to endure more scrutiny
only if pulling the arm earlier boosts her credibility. Since p(t) > /L(T/ ), good Sender strictly
prefers to pull the arm at the earlier time t, as she benefits from both scrutiny and credibility.

Next, we show that bad Sender pulls the arm with positive probability whenever good Sender
does, but bad Sender pulls the arm later than good Sender in the first-order stochastic dominance
sense. Moreover, bad sender pulls the arm strictly later unless no type pulls the arm. An immediate
implication is that bad Sender always withholds the arm with positive probability.

Lemma 3. (Bad Sender’s Behaviour). In any equilibrium, PG and Pg have the same supports
and, forall T €{1,...,T} with PG (t) >0, we have Pp(t) < PG (t). Therefore, in any equilibrium,
Pg(T) <F(T).

Proof. In Appendix B. ||

Intuitively, if there were a time 7 €{1,...,T} at which only good Sender pulled the arm with
positive probability, then, upon observing that the arm was pulled at t, Receiver would conclude
that Sender was good. But then, to achieve this perfect credibility,'* bad Sender would want to
mimic good Sender and therefore strictly prefer to pull the arm at t, contradicting that only good
Sender pulled the arm at t. Nevertheless, bad Sender always delays relative to good Sender.
Indeed, if bad and good Sender were to pull the arm at the same time, then Sender’s credibility
would not depend on the pulling time. But with constant credibility, bad Sender would never pull
the arm to avoid scrutiny. Therefore, good Sender must necessarily pull the arm earlier than bad
Sender.

We now show that, at any time when good Sender pulls the arm, bad Sender is indifferent
between pulling and not pulling the arm. That is, in equilibrium, pulling the arm earlier boosts
Sender’s credibility as much as to exactly offset the expected cost of longer scrutiny for bad Sender.
Thus, Receiver’s interim beliefs are determined by bad Sender’s indifference condition (2) and
the consistency condition (3). The consistency condition follows from Receiver’s interim beliefs
being determined by Bayes’s rule and Sender’s equilibrium strategy. Roughly, it says that a
weighted average of interim beliefs is equal to the prior belief.

Lemma 4. (Receiver’s Beliefs). In any equilibrium,

va (s)dHp (s|t, (7)) =vp(u (T +1)) for all T in the support of Pg, 2)

14. By part (ii) of Assumption 1, such perfect credibility can never be dented: Hy (.|, 1) assigns probability 1 to
s=1forall § and .
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1— 1—
3 ﬂ(Pc(r)—Pc(r—l)hT”. 3)

Tesupp(Pg) (1)
Proof. In Appendix B. ||

We now characterize the set of equilibria. Part 1 of Proposition 1 states that, for any set of times,
there exists an equilibrium in which good Sender pulls the arm only at times in this set. Moreover,
in any equilibrium, at any time when good Sender pulls the arm, she pulls it with probability 1 and
bad Sender pulls it with strictly positive probability. The probability with which bad Sender pulls
the arm at any time is determined by the condition that the induced interim beliefs keep bad Sender
exactly indifferent between pulling the arm then and not pulling it at all. Part 2 of Proposition 1
characterizes the set of divine equilibria of Banks and Sobel (1987) and Cho and Kreps (1987).1
In such equilibria, good Sender pulls the arm as soon as it arrives.

Proposition 1. (Equilibrium).
(1) ForanyT C{1,...,T+ 1} with T+ 1€7T, there exists an equilibrium in which the support

of Pg is T. In any equilibrium, PG and P have the same supports, and for all T in the
support of Pg, Pg(t)=F (1) and

. 1= ()
PpO=1— ) 0 PO —Pe=D). )

tesupp(Pg) s.t. t<t
where u(t) € (0,1) is uniquely determined by (2) and (3).
(2) There exists a divine equilibrium. In any divine equilibrium, for all t€{l,...,T+1},
Pg(t)=F (7).

Proof. In Appendix B. ||

Although there exist a plethora of divine equilibria, in all such equilibria, pulling probabilities
of good and bad Sender, as well as Receiver’s beliefs, are uniquely determined by Pg=F and
(2)-(4). In this sense, there exists an essentially unique divine equilibrium.

Our main testable prediction is that bad Sender pulls the arm strictly later than good Sender
in the likelihood ratio order sense.

Corollary 1. (Equilibrium Dynamics). In the divine equilibrium,

Pg(t)—Pp(t—1) - Pp(t+1)—Pp(7)
Pg(t)—Pg(t—1) Pg(r+1)—Pg(7)

forall T €{l,...,T}.

Proof. In Appendix B. ||

Corollary 1 implies that, conditional on pulling time T being between any two times T’ and 7",
bad Sender pulls the arm strictly later than good Sender in the first-order stochastic dominance

15. Divinity is a standard refinement used by the signalling literature. It requires Receiver to attribute a deviation
to those types of Sender who would choose it for the widest range of Receiver’s interim beliefs. In our setting, the set
of divine equilibria coincides with the set of monotone equilibria in which Receiver’s interim belief about Sender is
non-increasing in the pulling time. Specifically, divinity rules out all equilibria in which both types of Sender do not pull
the arm at some times, because Receiver’s out-of-equilibrium beliefs for those times are sufficiently unfavourable.

810z Jequiaydes 2z uo 1senb Aq || 0GZ.H/6E L 2/bIS8A0RISAe-B]0IHE/PN}SaL/W0o dNO"OIWLSPEDE//:SARY WOl POPEOJUMOQ



2148 REVIEW OF ECONOMIC STUDIES

sense (Theorem 1.C.5, Shaked and Shanthikumar, 2007):

Pp(t)—Pp(7') - PG (1) —Pg(7')
Pp(t")—Pp(t") Pc(t")—Pg(1')

forall v/ <7 <7”.

Our model also gives predictions about the evolution of Receiver’s beliefs. Pulling the arm
earlier is more credible as Receiver’s interim beliefs w (7) decrease over time. Moreover, pulling
the arm instantaneously boosts credibility in the sense that Receiver’s belief at any time t about
Sender’s type is higher if Sender pulls the arm than if she does not.

Corollary 2. (Belief Dynamics). Let (i (1) denote Receiver’s interim belief that Sender is good
given that she has not pulled the arm before or at . In the divine equilibrium,

u@—=D>pu@)>p(t—=10)>pu(r) forallt{2,...,T}.

Proof. In Appendix B. ||

3.2. Discussion of model assumptions

We now discuss how our results change (or do not change) if we relax several of the assumptions
made in our benchmark model. We discuss each assumption in a separate subsection. The reader
may skip this section without any loss of understanding of subsequent sections.

3.2.1. Nonlinear Sender’s payoff. In the benchmark model, we assume that Sender’s
payoff is linear in Receiver’s posterior belief: vg(s)=vp(s)=s for all s. In our motivating
example, this linearity arises because the opposition is uncertain about the ideological position r
of the median voter. If there is no such uncertainty, then the median voter reelects the incumbent
whenever s is below r, where r € (0, 1) is a constant. Therefore, Sender’s payoff is a step function:

=y =" 8" 5)
1 ifs>r.

We now allow for Sender’s payoff to be nonlinear in Receiver’s posterior belief and even type
dependent. To understand how the shapes of the payoff functions v and vp affect our analysis, we
extend the statistical properties of Lemma 1, which describe the evolution of Receiver’s posterior
belief from Sender’s perspective. First and not surprisingly, a more favourable interim belief results
in more favourable posterior beliefs for all types of Sender and for all realizations of the process.
Moreover, Receiver’s posterior belief follows a supermartingale (submartingale) process from
bad (good) Sender’s perspective. Lemma 1’ formalizes these statistical properties, using standard
stochastic orders (see, e.g., Shaked and Shanthikumar, 2007). Distribution Z; strictly dominates
distribution Z; in the increasing convex (concave) order if there exists a distribution Z such that
Z; strictly first-order stochastically dominates Z and Z is a mean-preserving spread (reduction)
of Z;.

Lemma 1'. (Statistical Properties). Forallt,v'€{1,...,T+1}suchthatt <1/, and allm,m’ €
(0,1] such that m <m’,

(1) Hy ( | T, m’) strictly first-order stochastically dominates Hg (.| t,m) for 8 € {G,B};
(2) Hp ( |/, m) strictly dominates Hg (.| T,m) in the increasing concave order;
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(3) Hg(.|t,m) strictly dominates Hg ( | r’,m) in the increasing convex order.

Proof. In Appendix A. ||

To interpret Lemma 1’, we assume that the payoff of both types of Sender is a continuous
strictly increasing function of Receiver’s posterior belief, so that both types of Sender want
to look good.'® Part 1 says that credibility is beneficial for both types of Sender, regardless
of the shape of their payoff functions. Part 2 (part 3) says that from bad (good) Sender’s
perspective, pulling the arm earlier results in more spread out and less (more) favourable posteriors
provided that the interim belief does not depend on the pulling time. So scrutiny is detrimental
for bad Sender if her payoff is not too convex but beneficial for good Sender if her payoff
is not too concave. Therefore, for a given process satisfying Assumption 1, Proposition 1
continues to hold if bad Sender is not too risk-loving and good Sender is not too risk-averse.
In fact, Proposition 1 continues to hold verbatim if bad Sender’s payoff is weakly concave
and good Sender’s payoff is weakly convex (the proof in Appendix B explicitly allows for this
possibility).!”

Much less can be said in general if the payoff functions v and vp have an arbitrary shape.
For example, if vg is sufficiently concave, then good Sender can prefer to delay pulling the
arm to reduce the spread in posterior beliefs. Likewise, if vp is sufficiently convex, then bad
Sender can prefer to pull the arm earlier than good Sender to increase the spread in posterior
beliefs. These effects work against our credibility-scrutiny trade-off and Proposition 1 no longer
holds.'® Nevertheless, bad Sender weakly delays pulling the arm relative to good Sender under
the following single crossing assumption.

Assumption 2. For all t,7'€{l,....,T+1} such that T <t" and p(t), (') €(0,1), if bad
Sender weakly prefers to pull the arm at T than at T/, then good Sender strictly prefers to pull the
armat T than at t'.

This assumption holds in the benchmark model by Lemma 2. This assumption also
holds if Sender’s payoff is the step function in (5) whenever pulling the arm later reveals
strictly less useful information about Sender’s type, in the sense that Receiver is strictly
worse off.!

16. Itis sufficient for our results to assume that Sender’s payoff is an upper hemicontinuous correspondence (rather
than a continuous function) of Receiver’s posterior belief. For example, this is the case if Sender’s and Receiver’s payoffs
depend on Receiver’s action and Sender’s type, and Receiver’s action set is finite. In the above example with constant
ideological position, Sender’s payoff in (5) is a correspondence with v(r) =[0, 1], because it is optimal for Receiver to
randomize between the two actions when s=r.

17. More generally, Proposition 1 holds whenever sv (s) is strictly convex and (1 —s)vp (s) is strictly concave, that
is, for all s, Sender’s Arrow-Prat coefficient of absolute risk aversion —vg (s)/ vé (s) is less than 2/s for good Sender and
more than —2/(1 —s) for bad Sender. For the Poisson model of Section 4, Proposition 1 continues to hold for any risk
attitude of good Sender and only relies on bad Sender being not too risk-loving.

18. These effects are common in the Bayesian persuasion literature (Kamenica and Gentzkow, 2011). In
this literature, Sender is uninformed. Therefore, from her perspective, Receiver’s beliefs follow a martingale
process (Ely et al., 2015), so only convexity properties of Sender’s payoff affect the time at which she pulls
the arm.

19. The inequality (6) holds if and only if fx' H(s | r/,ﬂ)ds> f; H (s|t,m)ds for all xe (0, 1). In comparison, part
(i) of Assumption 1 holds if and only if fxl H (sl r’,n)ds > jxl H (s|t,m)ds for all x € (0, 1) with strict inequality for some
xe(0,1).
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Lemma 2. (Good Sender’s Behaviour). Let vy be given by (5). If for all t,7' €{1,...,T+1}
such that T <t

1 1
/H(s|r/,m)ds>/ H(s|t,m)ds for allme(0,1), (6)

then Assumption 2 holds.

Proof. In Appendix B. ||

If Assumption 2 holds and vy is strictly increasing, then in the unique divine equilibrium,
good Sender pulls the arm as soon as it arrives and bad Sender pulls the arm weakly later than
good Sender—there may exist an equilibrium in which both good and bad Sender pull the arm
as soon as it arrives.”’

3.2.2. Imperfectly informed Sender. In many applications, Sender does not know with
certainty whether pulling the arm would start a good or bad learning process for Receiver. For
example, when announcing the reopening of the Clinton investigation, Director Comey could not
know for certain what the results of the investigation would eventually be.

We generalize our model to allow for Sender to only observe a signal o € {op,05} about an
underlying binary state 6, with normalization

og=Pr(0=Glog)>n>Pr(0 =G|op)=o0p.
The statistical properties of Lemma 1 still hold.

Lemma 1”. (Statistical Properties). LetE[s|t,m,o] be the expectation of Receiver’s posterior
belief s conditional on the pulling time t, Receiver’s interim belief m, and Sender’s signal o. For
all t,7'€{l,...,T+1} such that T <1/, and all m,m’ € (0, 1] such that m <n?/,

(1) E s|r,m’,o]>E[s|r,m,cr];
(2) E[s|t',m,op]>El[s|t,m,0p];
(3) E[slt,m,a(;]>]E[s|r’,m,0(;].

Proof. In Appendix A. ||

These statistical results ensure that credibility is always beneficial for Sender, whereas scrutiny
is detrimental for Sender with signal o but beneficial for Sender with signal og. Therefore, all
our results carry over.

Moreover, we can extend our analysis to allow for signal o to be continuously distributed on
the interval [g , 6), with normalization o =Pr (6 =G| o). In particular, in this case, there exists a
partition equilibrium with 6 =09 > 0| > --- > o741 =0 such that Sender o € [o,, oy— 1) pulls the
arm as soon as it arrives unless it arrives before time € {1,..., T+ 1} (and pulls the arm at time ¢
if it arrives before ?).

20. For vg given by (5), we can show that bad Sender withholds the arm with strictly positive probability, Pp(T) <
F(T), in all divine equilibria, if 7 > r. In this case, however, vy is not strictly increasing, and there exist divine equilibria
in which good Sender does not always pull the arm as soon as it arrives. For example, there exists a divine equilibrium
in which bad and good Sender never pull the arm by the deadline: P (T) =Pg(T)=0. In this equilibrium, both bad and
good Sender enjoy the highest possible payoff, 1.
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3.2.3. Type-dependentarrival ofthearm. Inmany applications, itis more reasonable to
assume that the distribution of the arrival of the arm differs for good and bad Sender. For example,
fake scandals may be easy to fabricate, whereas real scandals need time to be discovered.

We generalize the model to allow for different distributions of the arrival of the arm for good
and bad Sender. In particular, the arm arrives at a random time according to distributions Fg=F
for good Sender and Fp for bad Sender.

The proof of Proposition 1 (in Appendix B) explicitly allows for the arm to arrive (weakly)
earlier to bad Sender than to good Sender in the first-order stochastic dominance sense: Fg(f) >
Fg(¢) for all ¢. This assumption is clearly satisfied if bad Sender has the arm from the outset or
if bad and good Sender receive the arm at the same time.

More generally, Proposition 1 continues to hold verbatim unless the arm arrives sufficiently
later to bad Sender than to good Sender such that Fp (f) < Pg(t) for some ¢, where Pp () is given
by (4). But even then, Corollary 1 still holds. That is, bad Sender pulls the arm strictly later than
good Sender. Yet, bad Sender may do so for the simple mechanical (rather than strategic) reason
that the arm arrives to her later than to good Sender.?!

3.2.4. Stochastic deadline. In the benchmark model, we assume that the deadline T
is fixed and common knowledge. In some applications, the deadline 7 may be stochastic. In
particular, suppose that 7 is a random variable distributed on {1, ey T} where time runs from 1
to T+ 1. Now the process L has T as a random variable rather than a constant. For this process,
we can define the ex-ante distribution H of posteriors at 7', where H depends only on pulling
time T and interim belief m. Notice that Assumption 1 still holds for this ex-ante distribution of
posteriors forany 7,7’ € { 1,....T+1 } Therefore, from the ex-ante perspective, Sender’s problem
is identical to the problem with a deterministic deadline and all results carry over.

4. POISSON MODEL

To get more precise predictions about the strategic timing of information release, we now assume
that the arrival of the arm and Receiver’s learning follow Poisson processes. In this Poisson model,
time is continuous ¢ € [0, T'].?> The arm arrives to Sender at Poisson rate o, so that F (f) =1 —e ™",
Once Sender pulls the arm, a breakdown occurs at Poisson rate A if Sender is bad, but never
occurs if Sender is good, so that H (.| t,m) puts probability (1 —m) (1 —e_’\(T_f)) on s=0 and
the complementary probability on

m
5= :
m+(1—m)e=*+T=1)

Returning to our main application, the Poisson model assumes that scandals can be
conclusively debunked, but cannot be proven real. It also assumes that the opposition receives
the scandalous material against the president at a constant rate, independent of whether they are
real or fake. As discussed in Section 3.2.3, the results would not change if real documents take
more time to be discovered than fake document take to be fabricated.

Our benchmark model does not completely nest the Poisson model. In fact, part (ii) of
Assumption 1, that the learning process never fully reveals Sender’s type, fails in the Poisson

21. In this case, there exist some time t at which bad Sender strictly prefers to pull the arm and (2) no longer holds
for 7.

22. Technically, we use the results from Section 3.1 by treating continuous time as an appropriate limit of discrete
time.
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model because a breakdown fully reveals that Sender is bad. Nevertheless, if only part (i) of
Assumption 1 is satisfied, a version of Proposition 1 continues to hold, with the difference that
bad Sender never pulls the arm before some time 7. Specifically, Proposition 1 holds for all T >7,
whereas 1 () =1 and Pg (1) =0 for all = <. Intuitively, even if Receiver believes that only good
Sender pulls the arm before 7, bad Sender strictly prefers to pull the arm after 7 to reduce the risk
that Receiver fully learns that Sender is bad.

We can, therefore, explicitly characterize the divine equilibrium of the Poisson model. First,
good Sender pulls the arm as soon as it arrives.”? Second, bad Sender is indifferent between
pulling the arm at any time # >7> 0 and not pulling it at all. Third, bad Sender strictly prefers to
delay pulling the arm if  <7.

In the divine equilibrium of the Poisson model, p(¢) =1 for all  <f, and equations (2) and
(3) become

w (t)e—)\(T—t)
p@+A—pe)e =0

/Tal—u(t) g 1) o _ 1=
0

w(T) for all t>7,
(1) w(T) 7T

Adding the boundary condition lim, ;p(r)=1 yields the explicit solution 4 () and uniquely
determines 7.

Proposition 2. In the divine equilibrium, good Sender pulls the arm as soon as it arrives and
Receiver’s interim belief that Sender is good given pulling time t is:

(D)

—wD et
()= 1=w@(T=0-1) ift> |
! otherwise,

where w(T) is Receiver’s posterior belief if the arm is never pulled and

=

{0 ifr<m;

1 1 .
T Alnu(T) otherwise,

AT | 3 —aT -1 B
[ae +Aie + —n] ifJT<7T;

a+A T
w(T) = —7
[Wwﬁu 1] “ otherwise,
N -1
S
a+X

The parameters of the model affect welfare directly and through Sender’s equilibrium behavior.
Proposition 3 says that, in the divine equilibrium, direct effects dominate. Specifically, a higher
prior belief m results in higher posterior beliefs, which increases both bad and good Sender’s

23. Inevery divine equilibrium, Pg (1) =F (t) forall t € [?, T] and Pp(r)=0forallre [O, ?]. But for each distribution
P such that P(t) <F(¢) forall t e [O,f) and P(t)=F (¢) forall te [f, T], there exists a divine equilibrium with Pg =P. For
ease of exposition, we focus on the divine equilibrium in which Pg (f) = F (¢) for all 1 € [0, T].

810z Jequiaydes 2z uo 1senb Aq || 0GZ.H/6E L 2/bIS8A0RISAe-B]0IHE/PN}SaL/W0o dNO"OIWLSPEDE//:SARY WOl POPEOJUMOQ



GRATTON ET AL. WHEN TO DROP A BOMBSHELL 2153

welfare. Moreover, a higher breakdown rate A or a higher arrival rate o allows Receiver to learn
more about Sender, which decreases (increases) bad (good) Sender’s welfare. Proposition 3 also
derives comparative statics on Receiver’s welfare given by (1).*

Proposition 3. In the divine equilibrium,

(1) the expected payoff of bad Sender increases with w but decreases with A and o;
(2) the expected payoff of good Sender increases with m, A, and o;
(3) the expected payoff of Receiver decreases with w but increases with A and «.

Proof. In Appendix C. ||

4.1. Static analysis

We now explore how the parameters of the model affect the probability that Sender releases
information. The probability that bad Sender pulls the arm is
7 1—p((T) ool

Pp(T)=1-——

l—m () ’ @

which follows from

JTefaT

me T+ (1—m)(1-Pp(T))’
Proposition 4 says that bad Sender pulls the arm with a higher probability if the prior belief 7 is
lower, if the breakdown rate A is lower, or if the arrival rate « is higher.

w()=

®)

Proposition 4. In the divine equilibrium, the probability that bad Sender pulls the arm decreases
with w and A but increases with «.

Proof. In Appendix C. ||

Intuitively, if the prior belief 7 is higher, bad Sender has more to lose in case of a breakdown.
Similarly, if the breakdown rate A is higher, pulling the arm is more likely to reveal that Sender
is bad. In both cases, bad Sender is more reluctant to pull the arm. In contrast, if the arrival rate
« is higher, good Sender is more likely to pull the arm and Receiver will believe that Sender is
bad with higher probability if she does not pull the arm. In this case, bad Sender is more willing
to pull the arm.

The total probability that Sender pulls the arm is given by the weighted sum of the probabilities
Pp(T) and Pg (T) that bad Sender and good Sender pull the arm:

ne—aT

(T

A change in A affects Pp(T'), but not PG (T'); a change in « affects both Pp(T") and Pg (T) in the
same direction. Therefore, Sender pulls the arm with a higher total probability if the breakdown

Pp(T)=nPc(T)+(1—m)Pp(T)=1— ©)

24. For an arbitrary Receiver’s Bernoulli payoff function, which depends on Receiver’s action and Sender’s type,
the second-order Taylor approximation of Receiver’s expected payoff increases with the variance of his posterior belief,
and therefore with A and «. In contrast, the comparative statics with respect to 7z are less robust. For example, if Receiver’s
Bernoulli payoff function is — (a—0)2, where a € R is Receiver’s action and 6 € {0, 1} is Sender’s type, then Receiver’s
expected payoff decreases with 7 for w < 1/2 and increases with 7 for = > 1/2.
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rate is lower or if the arrival rate is higher. The prior belief 7 has a direct and an indirect effect on
the total probability that Sender pulls the arm. On the one hand, holding P (T') constant, P(T')
directly increases with r, because PG (T) > Pg(T). On the other hand, P(T') indirectly decreases
with 7, because Pp(T) decreases with . Proposition 5 says that the indirect effect dominates
the direct effect when 7 is sufficiently low.

Proposition 5. In the divine equilibrium, the total probability that Sender pulls the arm
decreases with A, increases with «, and is quasiconvex in 7 : decreases with 7 if

OteaT

0,1
n<ae°‘T—|—)»(e°‘T—l)e( D

and increases with w otherwise.

Proof. In Appendix C. ||

The probabilities Pg(T)=1—e~%T and Pg(T) that good Sender and bad Sender pull the
arm also determine Receiver’s posterior belief u (7). By (8), i (T) decreases with the breakdown
rate A, because Pp(T) decreases with A. Equation (8) also suggests that there are direct and
indirect effects of the prior belief = and the arrival rate & on w (7). On the one hand, holding
Pp (T) constant, p(T) directly increases with 7 and decreases with «. On the other hand, u (T')
indirectly decreases with 7 and increases with o, because Pp (T) decreases with w7 and increases
with «. Proposition 6 says that the direct effect always dominates the indirect effect in the Poisson
model.

Proposition 6. In the divine equilibrium, Receiver’s posterior belief if the arm is never pulled
increases with w but decreases with A and «.

Proof. In Appendix C. ||

4.2.  Dynamic analysis

The Poisson model also allows for a more detailed analysis of the strategic timing of information
release. By Proposition 2, bad Sender begins to pull the arm at time 7. In the spirit of Proposition 4,
bad Sender begins to pull the arm later if the prior belief 7 is higher, if the breakdown rate A is
higher, or if the arrival rate « is lower.

Proposition 7. In the divine equilibrium, t increases with = and A but decreases with .

Proof. In Appendix C. ||

At each time ¢ after 7, bad Sender pulls the arm with a strictly positive probability density
pp (t) (Figure 2a). Proposition 8 says that pp(¢) first increases and then decreases with time.

Proposition 8. In the divine equilibrium, the probability density that bad Sender pulls the arm
at time t is quasiconcave: increases with t if

1 o 1
t<tp=T——-In| ———
A oa+r u(T)

and decreases with t otherwise.
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0.2F

oo

FIGURE 2
Pulling density and breakdown probability; « =1, A=2, 7 =.5, T =1. (a) dotted: pg (¢); solid: pp (¢); dashed: p(¢);
(b) dotted: A (T —1); solid: pp (t)/pc (t); dashed: Q(¢).

Proof. In Appendix C. ||

Intuitively, the dynamics of pg (¢) are driven by a strategic and a mechanic force. Strategically,
as in Corollary 1, bad Sender delays pulling the arm with respect to good Sender, so that the
likelihood ratio pg () /pG () increases with time, where pg (f) =ae™%! is the probability density
that good Sender pulls the arm at time 7. Mechanically, pg () roughly follows the dynamics of
pc (). If the arrival rate « is sufficiently small, so that the density pg (¢) barely changes over time,
the strategic force dominates and the probability that bad sender pulls the arm monotonically
increases with time (7, > T'). Instead, if the arrival rate « is sufficiently large, so that pg (¢) rapidly
decreases over time, the mechanic force dominates and the probability that bad sender pulls the
arm monotonically decreases with time (z, <T).

The total probability density p(¢) that Sender pulls the arm is a weighted sum of pg (¢) and
pg (1), so that p(t) =npg (1) + (1 —m)pp () (Figure 2a). Therefore, until z, p(t) =7 pg(¢), and
thereafter, as in Proposition 8, p(¢) first increases and then decreases with time.

Proposition 9. In the divine equilibrium, the total probability density that Sender pulls the arm
at time t decreases with t from 0 to t and is quasiconcave in t on the interval [f, T]: increases
with t if

_ 1
l‘<t<tsET——1n(

o H—u(T))
A

a+Ar u(T)

and decreases with t if t > t;.

Proof. In Appendix C. ||
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Let the breakdown probability Q(t) be the probability that a breakdown occurs before the
deadline given that the arm is pulled at time ¢ (Figure 2b). Proposition 10 says that, as time
passes, the breakdown probability first increases and then decreases.”

Proposition 10. In the divine equilibrium, the breakdown probability is quasiconcave:

increases with t if
1 1 T
t<tp=T——In l() <T
A 2u(T)

and decreases with t otherwise.

Proof. In Appendix C. ||

Intuitively, the breakdown probability increases with the amount of scrutiny and with the
likelihood ratio pp(f) /pg(t). Obviously, Sender is exposed to more scrutiny if she pulls the
arm earlier. But the likelihood ratio pg (f) /p () is lower earlier, because bad Sender strategically
delays pulling the arm. Proposition 10 says that this strategic effect dominates for earlier times.

5. APPLICATIONS
5.1. U.S. presidential scandals

Returning to our presidential scandals example, the main prediction of our model is that fake
scandals are released later than real scandals. We explore this prediction using Nyhan’s (2015)
data on U.S. presidential scandals from 1977 to 2008. For each week, the data report whether
a new scandal involving the current U.S. president was first mentioned in the Washington Post.
Although scandals might have first appeared on other outlets, we agree with Nyhan that the
Washington Post is likely to have mentioned such scandals immediately thereafter. As our model
concerns scandals involving the incumbent in view of his possible reelection, we focus on all the
presidential elections in which the incumbent was a candidate. Therefore we consider only the
first term of each president from 1977 to 2008, beginning on the first week of January after the
president’s election.?®-?” In all cases, the election was held on the 201st week after this date. We
construct the variable weeks to election as the difference between the election week at the end of
the term and the release week of the scandal.

For each scandal,®® we locate the original Washington Post article as well as other
contemporary articles on The New York Times and the Los Angeles Times. We then search
for subsequent articles on the same scandal in following years until 2016, as well as court
decisions and scholarly books when possible. We check whether factual evidence of wrongdoing

25. If the arrival rate « is sufficiently small, then 7, is negative and hence the breakdown probability monotonically
decreases with time.

26. This corresponds to the first terms of five presidents: Jimmy Carter (1976-80), Ronald Reagan (1980-84),
George H. W. Bush (1988-92), Bill Clinton (1992-96), and George W. Bush (2000-04). Each president run for reelection
and three (Reagan, Clinton, and Bush) served two full terms.

27. Nyhan (2015) does not provide data on scandals involving the president-elect between Election Day and the
first week of January of the following year, but it contains data on scandals involving the president-elect between the first
week of January and the date of his inauguration: there are no such scandals.

28. We omit from our sample the “GSA corruption” scandal during Jimmy Carter’s presidency as the allegations,
explicit and implicit, of the scandal, while involving the federal administration, did not involve any of the member of
Carter’s administration or their collaborators (if anything, as Carter run with the promise to end corruption in the GSA,
the scandal might have actually reinforced his position). In any case, we check in Online Appendix A that our qualitative
results are robust to the inclusion of this scandal.
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FIGURE 3
US presidential scandals and weeks to election. Distribution of real and fake scandals. (a) whole term; (b) last 60

weeks only.

or otherwise reputationally damaging conduct was conclusively verified at a later time. If so, we
check whether the evidence involved the president directly or close family members or political
collaborators chosen or appointed by the president or his administration. We code these scandals
as real. For the remaining scandals, we check whether a case for libel was successful or all political
actors linked to the scandal were cleared of wrongdoings. We code these scandals as fake. The only
scandal we were not able to code by this procedure is the “Banca Nazionale del Lavoro” scandal
(also known as “Iraq-gate”). We code this scandal as real, but we check in Online Appendix A
that all our qualitative results are robust to coding it as fake. In Online Appendix A, we report
the complete list of scandals and a summary motivation of our coding decisions.

Figure 3 shows the empirical distributions of the first mention of real and fake presidential
scandals in the Washington Post as a function of weeks fo election. Although we do not observe
scandals released after the election (=7 41 in our model) and cannot pinpoint the date at which
the campaign begins (r=1 in our model), Corollary 1 implies that fake scandals are released
later than real scandals conditional on any given time interval. The left panel covers the whole
presidential term; the right panel focuses on the election campaign period only, which we identify
with the last 60 weeks before the election. Both figures suggest that fake scandals are released
later than real scandals. Because of the small sample size (only 15 scandals), formal tests have low
power. Nevertheless, using the Dardanoni and Forcina (1998) test for the likelihood ratio order
(which implies first-order stochastic dominance), we almost reject the hypothesis that the two
distributions are equal in favour of the alternative hypothesis that fake scandals are released later
(p-value: 0.114); we cannot reject the hypothesis that fake scandals are released later in favour
of the unrestricted hypothesis at all standard statistical significance levels (p-value: 0.834).2°

Our Poisson model offers a novel perspective over the October surprise concentration of
scandals towards the end of the presidential election campaign (Figure 1). In equilibrium, real
scandals are released as they are discovered by the media. Unless real scandals are more likely
to be discovered towards the end of the first term of a president, then we should not expect their

29. We discuss this test in greater detail in the context of the next application. For this application, we use k=3
equiprobable time intervals. For the election campaign period only (10 scandals), the p-values are 0.003 and 0.839,
respectively.
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release to be concentrated towards the end of the campaign (see pg (¢) in Figure 2a). Instead, fake
scandals are strategically delayed, and so they should be concentrated towards the end of the first
term of the president and just before the election (see pp(¢) in Figure 2a). In other words, our
model predicts that the October surprise effect is driven by fake scandals. In contrast, were the
October surprise effect driven by the desire to release scandals when they are most salient, then
the timing of release of real and fake scandals would be similar. Figure 4 is a replica of Figure 1,
but with scandals coded as real and fake. Fake scandals are concentrated close to the election,
with a majority of them released in the last quarter before the election. In contrast, real scandals
appear to be scattered across the entire presidential term.

Our Poisson model also predicts how different parameters affect the release of a U.S.
presidential scandal. We now illustrate how Nyhan’s (2015) empirical findings may be interpreted
using our model. Nyhan (2015) finds that scandals are more likely to appear when the president’s
opposition approval rate is low. In our model, the approval rate is most naturally captured by the
prior belief 1 —m (the belief that the president is fit to run the country). In our Poisson model,
a higher 7 has a direct and an indirect effect on the probability of release of a scandal. On the
one hand, a higher 7 means that the president is more likely to be involved in a real scandal,
thus directly increasing the probability that such a scandal is released. On the other hand, the
opposition optimally resorts to fake scandals more when the president is so popular that only
a scandal could prevent the president’s reelection. Therefore, a higher 7 reduces the incentive
for the opposition to release fake scandals, indirectly reducing the probability that a scandal is
released. We can then interpret Nyhan’s finding as suggesting that the direct effect on average
dominates the indirect effect.

But the president’s opposition approval rate also measures opposition voters’ hostility towards
the president, which might be captured by the rate A at which voters learn that a scandal is fake.*"
Indeed, Nyhan conjectures that when opposition voters are more hostile to the president, then they
are “supportive of scandal allegations against the president and less sensitive to the evidentiary

30. Therate of learning A might also be related to the verifiability of information, which may depend on the scandal’s
type (e.g., infidelity versus corruption).
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basis for these claims [and] opposition elites will be more likely to pursue scandal allegations”
(p. 6). Consistently, in our Poisson model, when voters take more time to tell real and fake scandals
apart, the opposition optimally resorts to fake scandals.

Nyhan (2015) also finds that fewer scandals involving the president are released when the
news agenda is more congested. Such media congestion may have the following two effects. First,
when the news agenda is congested, the opposition media has less time to devote to investigate the
president. In our Poisson model, this is captured by a lower arrival rate «, which in turn reduces the
probability that a scandal is released. Second, when the news agenda is congested, public scrutiny
of the scandal is slower as the attention of media, politicians, and voters are captured by other
events. In our Poisson model, this is captured by a lower breakdown rate A, which in turn increases
the probability that a scandal is released. We can interpret Nyhan’s finding as suggesting that the
media congestion effect through the arrival rate « dominates the effect through the breakdown
rate 1.3

5.2.  Initial public offerings

We now apply our model to the timing of IPOs. Sender is a firm that needs liquidity in a particular
time frame, and this time frame is private information of the firm. The need for liquidity could arise
from the desire to grow the firm, expand into new products or markets, or because of operating
expenses outstripping revenues. It could also arise because of investors having so-called “drag-
along rights”, where they can force founders and other shareholders to vote in favour of a liquidity
event.

When announcing the IPO, firms have private information regarding their prospective long-
run performance. Good firms expect their business to out-perform the market’s prior expectation;
bad firms expect their business to under-perform the market’s prior expectation. After a firm
announces an IPO, the market scrutinizes the firm’s prospectus, and learns about the firm’s
prospective performance. The initial trade closing price of the stock is determined by the market’s
posterior belief at the initial trade date. Therefore, after the initial trade date, as the firms’ potential
is gradually revealed to the market, good firms’ stocks out-perform bad firms’ stocks.

Since the true time frame is private information, the firm can “pretend” to need liquidity faster
than it actually does, and it has significant control over the time gap between the announcement
of the IPO and the initial trade date. A shorter time gap decreases the amount of scrutiny the firm
undergoes before going public, but also reduces credibility. Therefore, our model predicts that
bad firms should choose a shorter time gap than good firms.??

We explore this prediction using data on U.S. IPOs from 1983 to 2016. For each IPO, we
record the time gap and calculate the cumulative return of the stock, starting from the initial
trade date. We measure the stock’s performance as its return relative to the market return over the
same period. Following Loughran and Ritter (1995), we evaluate IPOs’ long-run performance

31. Another possible explanation (not captured by our model) for Nyhan’s finding is that media organizations
strategically avoid releasing scandals when voters’ attention is captured by other media events and scandals may be less
effective (see Durante and Zhuravskaya, 2017).

32. One way to map this application into our model is as follows. Suppose that a firm learns at date 7, that it needs
liquidity in a time frame Ar, meaning that the latest possible initial trade date is 7, + Ar. Both ¢, and A are privately
known by the firm. Date #; is drawn according to the (improper) uniform distribution on the set of integers Z. The time
frame is Ap =T —t, where ¢ has a distribution F on {1,...,7+1}. The firm chooses a time gap Ag=T —t subject to
te{t,...,T+1}, meaning that it announces an IPO at a date 7, € {t¢,...,7,+ (Ar — Ag)} with the initial trade date at
t,+ Ag <ty+ Ar. Announcing an IPO at date 7, with the initial trade date at #, — 1 means that the firm accesses liquidity
through other channels than an IPO. With this mapping, all our results hold exactly with P and Pp being the distributions
of T=T — A for good and bad firms, respectively.

810z Jequiaydes 2z uo 1senb Aq || 0GZ.H/6E L 2/bIS8A0RISAe-B]0IHE/PN}SaL/W0o dNO"OIWLSPEDE//:SARY WOl POPEOJUMOQ



2160

REVIEW OF ECONOMIC STUDIES

//r/ -

r 7

, /
= / =
5 ! 5
2 / g

[
2 / 2
a H a.
v v
2 ! >
= 1 =
= f =
=] ol =]
£ £
5 / 5
9] ,/ 9]
7
o4 Z (=3 |

100 200 300
time gap

200 300
time gap

400

Good IPOs = ———- Bad IPOs Good IPOs = ———- Bad IPOs

FIGURE 5
US IPOs and time gap. Distributions for good and bad IPOs. (a) 3 years; (5) years.

ye{3,5} years after the initial trade date. For each value of y, we code as good (bad) those IPOs
that performed above (below) market.??

Figure 5 shows the empirical distributions of time gap for good and bad IPOs evaluated at
3 and 5 years after the initial trade date. Both figures suggest that bad firms choose a shorter
time gap in the first-order stochastic dominance sense, but with the effect being more clearly
visible after 5 years. This pattern is consistent with our idea that firms’ private information is
only gradually (and slowly) revealed to the market once the period of intense scrutiny of the [PO
ends.

Our main prediction in Corollary 1 is that the distribution of time gap for good IPOs dominates
the distribution of time gap for bad IPOs in the likelihood ratio order.3* We evaluate this prediction
using an approach developed by Dardanoni and Forcina (1998). This approach tests (1) the
hypothesis Hy that the distributions are identical against the alternative H that the distributions
are ordered in the likelihood ratio order; as well as (2) the hypothesis H; against an unrestricted
alternative H,. The hypothesis of interest H is accepted if the first test rejects Hy and the second
test fails to reject H{. Following Roosen and Hennessy (2004), we partition the variable time
gap into k intervals that are equiprobable according to the empirical distribution of time gap. We
report in Table 1 the p-values of the two statistics for the case of k=7.

For both 3 and 5 years performance, we reject the hypothesis Hy in favour of H; at the 1%
significance level. Furthermore, for 5 years performance, we cannot reject the hypothesis Hj
in favour of H; at all standard significance levels. In Online Appendix B we give some further
details about our data and the test, and we explore how the results of the test may change under
alternative specifications.

33. Our model predicts that the time gap should not affect expected excess returns, because the price at the initial
trade date takes into account the information contained in the time gap. Therefore, we cannot take a standard approach
of regressing excess returns on the time gap to evaluate the main prediction of our model that bad firms choose a shorter
time gap.

34. As we discuss in Section 3.2.3, bad Sender may pull the arm later than good Sender simply because she receives
it later than good Sender (not because she strategically delays). Therefore, we do not empirically identify whether bad
firms choose a shorter time gap for a strategic reason.
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TABLE 1
Dardanoni and Forcina test for likelihood ratio order (p-values)
3 years 5 years
HO versus HI 0.001 0.000
HI versus H2 0.000 0.361
Obs. 529 403

6. CONCLUDING REMARKS

We have analysed a model in which the strategic timing of information release is driven by
the trade-off between credibility and scrutiny. The analysis yields novel predictions about the
dynamics of information release. We also offered supporting evidence for these predictions using
data on the timing of U.S. presidential scandals and the announcement of IPOs.

Our model can also be used to deliver normative implications for the design of a variety of
institutions. In the context of election campaigns, our results could be employed to evaluate laws
that limit the period in which candidates can announce new policies in their platforms or media
can cover candidates. For example, more than a third of the world’s countries mandate a blackout
period before elections: a ban on political campaigns or, in some cases, on any mention of a
candidate’s name, for one or more days immediately preceding elections.®

The framework we have developed has further potential applications. For instance, the
relationship between a firm’s management team and its board of directors often exhibits the core
features of our model: management has private information and potentially different preferences
than the board; the board’s view about a project or investment determines whether it is undertaken;
and management can provide more or less time to the board in evaluating the project or investment.
The comparative statics of our model may speak to how this aspect of the management—board
relationship may vary across industries and countries. Similarly, in various legal settings an
interested party with private information may come forward sooner or later, notwithstanding an
essentially fixed deadline for the legal decision-maker (due to institutional or resource constraints).
A natural example is witnesses in a criminal investigation, but the same issues often arise in civil
matters or even parliamentary inquiries.

In each of these applications, the credibility-scrutiny trade-off plays an important role, and we
hope our model, characterization of equilibrium, and comparative statics will serve as a useful
framework for studying them in the future.

APPENDIX
A. STATISTICAL PROPERTIES

Proof of Lemma 1. Follows from Lemma 1’. ||

Proof of Lemma 1'. Part 1. By Blackwell (1953), Assumption 1 with 7’=T+1 implies that pulling the arm at 7 is the
same as releasing an informative signal y. By Bayes’s rule, posterior s is given by:
o mq(y|G)
mq(y1G)+(1—m)qy|B)’
where g (y|6) is the density of y given 6. (If L is discrete, then g (y|0) is the discrete density of y given 6.) Therefore,
qp1G) _1-m s

qIB) m 1-s (A10)

35. The 1992 U.S. Supreme Court case Burson v. Freeman, 504 U.S. 191, forbids such practices as violations of
freedom of speech.
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Writing (A10) for interim beliefs m and m’, we obtain the following relation for corresponding posterior beliefs s and 5':

1-m' s _1-m s
m 1-s m 1-—s
which implies that
m's
= (A11)
/s (lfm’)(lfx)
%-’_ 1—-m

Therefore, s’ > s for m’ > m; so part 1 follows.

Part 2. By Blackwell (1953), Assumption 1 implies that pulling the arm at 7 is the same as pulling the arm at " and
then releasing an additional informative signal y with conditional density ¢ (y|6). Part 2 holds because for any strictly
increasing concave vg, we have

4l 54016) ,
Flstrm = E_VB(sqov|G>+<1—s)q(y|B))" ""’B}

=K E[VB< sq016) )lt’,s,B:||r',m,B]
L sq1G)+(1—5)g(v|B)

<E|vg <E[ $4016) |r/,x,B:|> |r/,m,B:|
L sq(y|G)+(1-5)q(y|B)

r sE[q(ylG) MS’B]
q(y|B)

VB
q016)
. SE|:q(y|B) |t ,S,B]—i-(l—s)

= E[vg(s)|t’.m,B],

|t',m,B

where the first line holds by Bayes’s rule, the second by the law of iterated expectations, the third by Jensen’s inequality
applied to concave vg, the fourth by strict monotonicity of vp and Jensen’s inequality applied to function sz/(sz+1—s)
which is strictly concave in z, and the last by definition of expectations.

Part 3. Analogously to Part 2, Part 3 holds because for any strictly increasing convex vg, we have

, _al 54/1G) ,
Hra@rm 6l = E_VG(sq(y|G>+<1fs>q(y|B>)'r ’m’G]

I sq(y|G) ) , ] , ]
=E|E ,8,G ,m,G
i [Vc<sq(y|c>+(1—s)q(y|3) e Gyle.m

> IE-VG<E[ $9016) Ir',s,Gj|)|r’,m,G]
L sqy1G)+(1—5)g(v|B)

N

q(|B) |,
s+(1—s)]E|:q(y|G) |t ,s,G:|

> E|vg |7',m,G

=E[vs(s)|t",m,G].

Proof of Lemma 1”. The proof of part 1 is the same as in Lemma 1". As noted before, pulling the arm at 7 is the same as
pulling the arm at ’ and then releasing an additional informative signal y with conditional density g(y|8). Let s, be the
probability that Sender is good given that Receiver’s posterior is s and Sender’s signal is 0. By (A1),

os

_ T

~ os (1—0)(1—s) *
=

1-m
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‘We have,
Els|t,m,o] = E $q016) Ir’,m,a]
Lsq(V|G)+(1—9)q(y|B)
= IE—IE|: $9016) |r/,s,a:||r/,m,a]
L Lsq(y1G)+(1—5)q(y|B)
aE[ $40'16) |r/,s,G:|+
-k Sq(yIG)+(1S—5()yq|(y|B) S
+(1—sg)u*:[ 2 \r',s,B]
L sq(y1G)+(1-5)q(y|B) |
'UIE[ 5401G) \T',S,G]—‘r
— K SQ(YlGH(l;qi)yq(le) ¢ omo
1—s,)E ' 5,G
| Hm) [sq(y|G>+(1—s>q(y|B> v ] ]
B sa+(1—sa)q(y|f;)
—E|sE| — 4019 Gl me
s+ (1= 2018
L q(y1G)

Z E[sl r’,m,a] whenever s, 2,

where the last line holds by Jensen’s inequality applied to function (s, + (1 —s5)z) / (s + (1 —s)z), which is strictly convex
(concave) in z whenever s, > s (s; <s). Because oG > 7 > op, we have s5; > 5> 54, s0 parts 2 and 3 follow. ||

B. BENCHMARK MODEL

To facilitate our discussion in Section 3.2, we prove our results under more general assumptions than in our benchmark
model. First, we assume that v (s) is continuous, strictly increasing, and (weakly) convex, and vz (s) is continuous, strictly
increasing, and (weakly) concave. Second, we assume that the arm arrives at a random time according to distributions
Fg=F for good Sender and Fp for bad Sender, where Fp(¢) > F () for all ¢.

Proof of Lemma 2. Part 1. Suppose, on the contrary, that j(7) < p,(r/ ) Then
/VB(S)dHB(SIT,M(T)) < /VB(S)dHB(Slf',M(T))

< [vB(s)dHB (sl (7)),

where the first inequality holds by part 2 of Lemma 1" and the second by part 1 of Lemma 1’. Therefore, bad Sender
strictly prefers to pull the arm at v’ than at 7. A contradiction.
Good Sender strictly prefers to pull the arm at T because

/VG(S)dHG(SIf,lL(f)) > /VG(S)dHG(S‘T/aM(f))

> /v(;(s)dHG (slit/, (7)),

where the first inequality holds by part 3 of Lemma 1’ and the second by u(t) > (r’ ) and part 1 of Lemma 1'.

Part 2. By part 1 of this lemma applied to T and 7/ =T+1, it suffices to show that p(z), (T +1)€(0,1) for all
7 in the support of Pp. First, by Bayes’s rule, T being in the support of Pg implies i (7) < 1. Second, by Bayes’s rule,
Fg(T) <1 implies u(T+1) >0. Third, u(7T+1) >0 implies p(7) >0, otherwise T could not be in the support of Pp
because vg (L (T+1)) >vp(0)=E[vg(s)|,0,B]. Finally, u(t) < 1 implies (T +1) < 1, otherwise 7 could not be in the
support of Pp because vg (1) >E[vg(s)|t,u(t),B]l. ||

Proof of Lemma 3. By part 2 of Lemma 2, each ¢’ in the support of Pp is also in the support of P;. We show that each ¢’ in
the support of Pg is also in the support of Pg by contradiction. Suppose that there exists #" in the support of Pg but not in
the support of Pg. Then, by Bayes’s rule u (t/ ) =1; so bad Sender who receives the arm at # <t gets the highest possible
equilibrium payoff vg (1), because she can pull the arm at time ¢" and get payoff vz (1) (recall that, for all ¢, the support of
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H (.|t,7) does not contain s =0 by part (ii) of Assumption (1)). Because bad Sender receives the arm at or before ¢’ with a
positive probability (recall that, for all #, Fp (t) > F () > 0 by assumption), there exists time t at which bad Sender pulls
the arm with a positive probability and gets payoff vz (1). But then (t) = 1, contradicting that bad Sender pulls the arm
at T with a positive probability.

Suppose, on the contrary, that there exists t such that Pg(r)>0 and Pp(t)>Pg(r). Because Py(r)=
i1 (Pg(1)— Py (t—1)), there exists 7’ <7 in the support of P such that Pg(t')—Pg(t'—1) > Pg(t') —Pg(t'—1).
Similarly, because 1 — Py (t) = Z,T;'Tl_*_l (Py(t)—Py(t—1))and 1 — P (t) >0 (recall that P (T) < Fg(T) < 1), there exists
7”7 > 7 in the support of Pg such that Pg (r”) —Pg (f” - l) >Pp (r”) —Pp (1:” - l). By Bayes’s rule,

o) 7 (Po(e) ~Po(e'~1) .
7 (PG(t)—Pc(t'—1))+(1—m)(Pp(z)—Pp(x'— 1)) ~

- 7 (Pg(t")—Pg(v"—1)) _
T n(Pg(t")—Pc(t"=1)+(1—nm)(Pp(r")—Pp(r"—1))

w(r”).

Therefore, by Lemma 2, bad Sender strictly prefers to pull the arm at t” than at 7/, contradicting that t’ is in the support
of Pp. ||

Proof of Lemma 4. By Lemma 3, Pg and Pp have the same supports and therefore 1 (7) € (0, 1). Let the support of P
be {r1,...,7,}. Notice that t, =T + 1 because P (T) <Fs(T) < 1. Since 1,_ is in the support of Pp and

Pp(th—1) < PG (th—1) =FG (th-1) <Fp(Tu-1),

where the first inequality holds by Lemma 3, the equality by part 2 of Lemma 2, and the last inequality by assumption
Fp(t)> Fg(t). Therefore, bad Sender who receives the arm at 7,—; must be indifferent between pulling the arm at 7,
or at 7,. Analogously, bad Sender who receives the arm at t,_x—; must be indifferent between pulling it at 7,_;_; and at
some T € {t,—¢,..., Tp}. Thus, by mathematical induction on k, bad Sender is indifferent between pulling the arm at any
7 in the support of Pg and at 7+ 1, which proves (2).
By Bayes’s rule, for all 7 in the support of Pg,
u(r)

1— 1-
L (Pp(r)—Pp(r— 1)) = —2 (P (1) — PG (r —1)). (B12)
7 wu(t)

Summing up over 7 yields (3). ||

Proof of Proposition 1. Part 1. We first show that, for each 7 C{1,...,T+1} with T+ 1 €7 and each t €7, there
exist unique Pg(7), Pp(t), and (7) given by part 1 of this proposition. It suffices to show that there exists a unique
{u ()} et €l0, 1171 that solves (2) and (3). Using (A11) with m=m and m’ = u(t), the left hand side of (2) can be
rewritten as

w(@s
J— pLd
Vot o)= [ v g | I,
T I-m

Because vp is continuous and strictly increasing, Vp is also continuous and strictly increasing. Furthermore, Vg (0) =vg (0)
and V(1) =vg(1). Therefore, for all (T +1) €[0,1] and all 7 € 7, there exists a unique u (t) that solves (2). Moreover,
for all T €7, u(z) is continuous and strictly increasing in (7 +1), is equal to 0 if u(T+1)=0, and is equal to 1 if
(T +1)=1. The left-hand side of (3) is continuous and strictly decreasing in u () for all T € 7. Moreover, the left-hand
side of (3) is 0 when p(t) =1 for all T € 7, and it approaches infinity when w (7) approaches O for all t € 7. Therefore,
substituting each w(t) in (3) with a function of (74 1) obtained from (2), we conclude that there exists a unique
(T +1) that solves (3).

We now construct an equilibrium for each 7 C{1,...,T+1} with T+ 1€ 7. Let Pg(t) and Pg(7) be given by part
1 of this proposition for all 7 €{1,...,T+1}. Let u(t) be given by part 1 of this proposition for all 7 €7 and u(7) =0
otherwise. Notice that, so constructed, Pg, Pp, and p exist and are unique. Pg is clearly a distribution. Pp is also a
distribution, because Pp (7) increases with t by (4) and Pg (T +1) =1 by (3) and (4). Furthermore, 1 is a consistent belief
because (B12) holds for all T € 7 by (4). It remains to show that there exists an optimal strategy for Sender such that good
and bad Sender’s distributions of pulling time are given by Pg and Pp. First, both good and bad Sender strictly prefer
not to pull the arm at any time t ¢ 7, because, by part (ii) of Assumption (1), pulling the arm at t gives Sender a payoff
of v (0) <vg (u(T +1)). Second, by (2), pulling the arm at any time 7 € 7 gives bad Sender the same expected payoff
vg (10 (T +1)). Finally, by part 1 of Lemma 2, good Sender strictly prefers to pull the arm at time v € 7 than at any other
time /> 1.

Finally, in any equilibrium, P and Pp have the same supports by Lemma 3. Moreover, for all 7 in the support of
Pg, Pg(t)=F(7) by part 2 of Lemma 2, Pg(7) satisfies (4) by (B12), u(r) € (0,1) by Lemma 3, and p(7) satisfies (3)
and (4) by Lemma 4.
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Part 2. First, we notice that, by part 1 of Proposition 1, there exists an equilibrium with 7 ={1,...,7+1}. In this
equilibrium, there are no out of equilibrium events and therefore it is divine.

Adopting Cho and Kreps (1987)’s definition to our setting (see, e.g., Maskin and Tirole, 1992), we say that an
equilibrium is divine if () =1 for any 7t ¢ supp(P¢) at which condition D1 holds. D1 holds at 7 if for all m € [0, 1] that
satisfy

/VB(S)dHB(SIT,m)Z max /VB(S)dHB(Slt,M(t)) (B13)
tesupp(Pg).t>1
the following inequality holds:

/vc(s)ng(slr,m)> max /vc(s)ng(slt,p,(t)). (B14)
tesupp(Pg).t>1
Suppose, on the contrary, that there exists a divine equilibrium in which Pg(7) < Fg(t) for some T €{1,...,T}. By
part 1 of Proposition 1, T ¢ supp(Pg). Let t* denote ¢ that maximizes the right-hand side of (B14). By Lemma 3, 1 (#*) < 1,
and, by Lemma 4, * maximizes the right-hand side of (B13). Therefore, by part 1 of Lemma 2, D1 holds at t;so (7)) =1.
But then 7 ¢ supp (Pg) cannot hold, because

/VG(s)ng(slr,l)=v0(1)> max /vG(s)ng(slt,u(t)).
resupp(Pg)

Proof of Corollary 2. By Lemma 4 and part 2 of Proposition 1, bad Sender is indifferent between pulling the arm at any
time before the deadline and not pulling the arm at all. Then, by Lemma 2, (7 —1) > u(7) for all <.
Using (4) with Pg =F, we have that for all 7 < T,
1—fi() 1—7 1—Pg(1)

A  m 1-Ps(1)

XL O ()~ Fo - 1) 1)
B 1—Fg(t)

1—
IEF[ ()
()
Since p(t—1) > p(7) for all 7, (B15) implies that fi(t —1) > fi(r) and u(7) > (r—1) forall z. |

|tzr+l:|.

Proof of Corollary 1. Using (4) with Pg=Fg, we have
l—p(r) 1—m Pp(r)—Pp(r—1)
u(r) T Pg(@)—Pg(x—1)

To complete the proof, notice that, by Corollary 2, pu(t) > p (r/ ) whenever T <7’. ||

Proof of Lemma 2'. Given Receiver’s interim belief m and pulling times 7 and 7/, we write H and H’ for distributions
H(.|t,m) and H ( | r’,m) of Receiver’s posterior belief s from Receiver’s perspective, and we write Hy and Hé for
distributions Hy (.| t,m) and Hy ( |7/ ,m) of Receiver’s posterior belief s from type-6 Sender’s perspective.

For any interim belief m € (0, 1) and pulling times 7,7’, by Bayes’s rule, we have

dH (s) = mdHg(s)+(1—m)dHp(s),

_ mdHg (s)
" mdHg (s)+(1—m)dHg(s)’

so that dHg (s) = ;- dH (s) and dHp (s) = 11:51 dH (s). Likewise, dH; (s) = --dH’ (s) and dHp (s) = 11_’;’ dH’ (s).
For any pulling time 7 and interim beliefs m,m’ € (0, 1), each posterior belief s under interim belief m transforms
into the posterior belief s” given by (A11) under interim belief m’.

Letm=yu(r) and m’ = (7). Bad Sender weakly prefers to pull the arm at 7 than at r’ if and only if

1 1 m's
m !
/OVB(S)dHB(S)Z/O vp wey Gomisy dHg (s),
m

1—m
which is equivalent to

m's

1 1
va(s)(l—s)dH(s)zf vg| ——2———— | —s)dH' (). (B16)
0 0 ,777’[:_"_ (17);1_)’51173')
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Similarly, good Sender strictly prefers to pull the arm at t than at v’ if and only if

1 1 m's
m ’
/0 vc(s)sdH(s)>/0 VG 7@4_ () (=) sdH' (s). (B17)
1-m

Because s and 5" are in (0,1), and s is strictly increasing in s, for any r € (0, 1), we have that s’ > r if and only if
s>’ for some " € (0, 1), which depends on m and m’. Thus, for vy given by (5), the inequalities (B16) and (B17) can be
rewritten as

1 1
/(l—s)dH(s) z[ (1—s)dH'(s), (B18)

1 1
/ sdH (s) > / sdH' (s), (B19)

r r
wherefr] and fr], stand for the Lebesgue integrals over the sets (r, 1] and (r/, 1]. Notice also that we are using a selection
from Receiver’s best response correspondence for which v(r) =0. The proof goes through for other selections, after

adding appropriate terms on both sides of (B18) and (B19). Integrating by parts, we can rewrite (B18) and (B19) as

—(1—r)H(r)+/ H(s)ds > —(1—r)H'(r') /H’(s)ds (B20)

—rH (r)— / H(s)ds > —r'H' (+) / H' (s)ds. (B21)
Suppose that (B20) and (6) hold and let us show that (B21) holds. We have H’ (r’) > H (r), because
A=n(H'(F)=H®) = (1= VH (F)+ (' —r)H (F) =0 =r)H(r)
> (1-r)H' (/)—‘,—/r H'(s)ds—(1—r)H(r)

1 1
Z/ H’(s)ds—/ H(s)ds>0,

where the equality holds by rearrangement, the first inequality holds by monotonicity of H, the second by (B20), and the
last by (6). The inequality (B21) then holds because

1 1 r
r’H’(r’)—rH(r)-i—[ H'(s)ds—/ H(s)ds > r'H'(r')—rH(r)—/ H' (s)ds

v

rH' (r')—rH(r)—H (') (r —7)

r(H'(r¥')—H(r))>0,
where the first inequality holds by (6), the second by monotonicity of H, and the last by the established inequality
H'(F)>H(). |

C. POISSON MODEL

Proof of Proposition 6. For m: Differentiating  (T') in Proposition 2 with respect to 7, we have

du( | Hu@? it <7,

o o >0.
dr EN—ZTM(T)HI otherwise,
T, d;;&T) —@+)T 5 | —(@4+A)T forall a, A, T >0. Second, when 7 > 7,
du(@) _ d i)
dxr dxr ’
p= PAITT oy
A b4
Thus, d" (T) <0, because
In(1 11— 1
In(1 +¢)_L In(+¢) 1l=z 1 >0,
dh a+A atr| afr A 7 1+¢

where the inequality follows from (1+¢)In(1+¢) > ¢.

810z Jequiaydes 2z uo 1senb Aq || 0GZ.H/6E L 2/bIS8A0RISAe-B]0IHE/PN}SaL/W0o dNO"OIWLSPEDE//:SARY WOl POPEOJUMOQ



GRATTON ET AL. WHEN TO DROP A BOMBSHELL 2167

For «: First, when 7w < 7,

du(T) 2 X
P T
do @) (a+1)? =0
x = rT =1+ @+0)T1e™T} >0,

where the last passage follows from et 5 14 (¢+A)T forall , A, T > 0. Second, when 7 > 77, by log-differentiation,

du(T) T A ln(1+¢)_ 1 d¢

doe "D Tatr Txedal
Thus,

W) o WFONAFD) 7 ha). (€22)

da ¢
Form =7, p=e@IT _1>0; so

%<0<=)ln(l+¢)<¢,
o

which is true for all ¢ > 0. Then % <0 for 7w > 7 follows because ¢ < e@tMT — 1 for 7 > 7 and the left hand side of
(C22) increases with ¢ for ¢ >0. ||

Proof of Proposition 3. Part 1. Recall that (1) Sender’s payoff equals Receiver’s posterior belief about Sender at t =T and
(2) in equilibrium, bad Sender (weakly) prefers not to pull the arm at all than pulling it at any time ¢ € [0, T']. Therefore,
bad Sender’s expected payoff equals Receiver’s belief about Sender at =T if the arm has not been pulled:

Efvpl=u(T). (C23)

Part 1 then follows from Proposition 6.
Part 2. By the law of iterated expectations,

E[s] = nE[vgl+(1—m)E[vgl=m
1—m
=E[v] = 1—T//«(T), (C24)

where s is Receiver’s posterior belief about Sender at =T and we use (C23) in the last passage. Thus, good Sender’s
expected payoff increases with « and A by Proposition 6. Finally, it is easy to see that E[v¢] increases in 7w after substituting
wu(T) in Efvg].

Part 3. We shall show that in the divine equilibrium

A=) (1 —p (D)

Elu] = 3

(C25)

Part 3 then follows from Proposition 6.

Since E[s]=m, by (1) and (C24), it is sufficient to prove that E[sz] =nE[vg]. We divide the proof in two cases:
7 <7 and 7 > 7. If 7 <7, Receiver’s expected payoff is given by the sum of four terms: (1) Sender is good and the arm
does not arrive; (2) Sender is good and the arm arrives; (3) Sender is bad and she does not pull the arm; and (4) Sender
is bad and she pulls the arm. Thus,

B[] = we o (u(r)y?
T 2
+JT/ (e)‘(Tft),u(T)) ae ¥dt
0
+(1=7) (1= Pp(T)) (1 (T))?

ro _ 2 1—p(r) _
_ MT=1) ( A(T—1) T at
+(1 71)/0 e (e u(T)) == ( 0 )o{e dr.

Solving all integrals and rearranging all common terms we get
]E[sz] = nE[vg].

If m > 7, Receiver’s expected payoff is given by the sum of five terms: (1) Sender is good and the arm does not arrive;
(2) Sender is good and the arm arrives before 7; (3) Sender is good and the arm arrives between 7 and T'; (4) Sender is bad
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and she does not pull the arm; (5) Sender is bad and she pulls the arm. Thus,
E[¢2] = meT (ur)?
+ (1 —e_‘";)
r W(T—1) 2
+ -1 T —ald
n/; (e n( )) oe t

+(1=m) (1= Pp(T)) (u(T))

T —
_,_(1_77)[ e‘”T‘”(eMT‘”;L(T)>21” <1 MI))ae““dz.

-7\ wn)
Solving all integrals and rearranging all common terms we again get
E[sz] = nE[vg].
I

Proof of Proposition 4. For n: Differentiating Pg (T) in (7) with respect to 7, we have

app(T) _ e’ T o duT) 1—p(D)
dn w(T)y(1—m) w(T) dm 1-7
e [[HR )i <,
- X 1+2
w(@(1—m) KQTW — #} otherwise.
First, when 7w <7, % <0 because u(T) <. Second, whenm > 7, % <0 if and only if
4> (14+¢)a%
= b @t
o+A

at+il—-m
—
T

¢:T >0.

Thus, 20 <, because 1+x¢ > (1+¢)* forall ¢ >0 and x & (0, 1).
For A: Differentiating P (7) in (7) with respect to A, we have

dPe(T) 7 T du(T)
dr -7 w(T)? dr

<0,

where the inequality follows from Proposition 6.
For o: Without loss of generality we can set T =1. Differentiating Pg (T in (7) with respect to «, we have

dpPg(T) 7 ,a[l—u(T) 1 dM(T)]
= e

da ~ 1-m w(@  (u(1)? de

First, when 7 < 7,

|-, dPg(T) <1 ) L @@+ =)t A (14+2(@+1)
—ee—— = —=2)"+
T da bid (@+1)?
( 1 ) (@(@+2) =)™ FA(14+2(@+1))
> ==2)+ 5
b (a+A)
- ﬁ(A(l+(a+x))+((a+,\)2—x)e<a+*>—(a+/\)2ea)

Z"“ @+ @t 2 a“} Z""
= —A —(a+A) = cr >0,
H{ (k—2)! (k—1)! k-2 |~ =
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where the inequality holds because each term ¢ in the sum is positive:

B (a+k)2((a+k)k—2_ak—2) ~ (a+)\)2)\(ot+)n)k_3
- (k—=2)! (k—1)!

Ck

@02 (DI @70 (3025 )3
N (k—2)! B (k—1)!

(o 4+2)2 A (a+1)k3 B (@+1)21(a+1)F3
(k=2)! (k=1)!

>0.

Second, when 7 > 7, % >0 if and only if

1 2)? i
—;qb[ln(l—i-(b)—ﬁ—(a—; ) (1—(1+¢)1)]—1—a—x>o
_atAl-m o
T
The left-hand side increases with «, treating ¢ as a constant. Then the inequality holds because it holds for « — 0:
1
%[1n(1+¢)+x(1_(1+¢)*1)}—1—A =0
1
;¢ln(1+¢) > 1.

Proof of Proposition 5. For A: Differentiating P(T) in (9) with respect to A, we have

aP(T) a ”)dPB(T)
7 dx
where the inequality follows from Proposition 4.

For «: Differentiating P (T) in (9) with respect to o, we have

dP(T) 1 dPg(T)
—— > (l—-7n
da da
where the last inequality follows from Proposition 4.

For m: Differentiating P (T) in (9) with respect to 7, we have

dP(1) _ me " (dM(T) _ M(T))
dr~ w(@?*\ dn T )

<0,

>0,

‘We now show that
dP(T)>0<:>7T> aeT
dmr — T (a+r)erT —1°

First, when 7 <7, we have dP(T') /dm <0 because w(T) <m and

du(T) _ (1) _ @)

dm 2 bid
Second, when 7 > 7, we have dP(T) /dm <0 if and only if

du(T) (M5 (1)
=e < .
dm w2 b
Substituting u (T), we get that this inequality is equivalent to

ae®T
< m-
It remains to show that
aeT
Substituting 77, we get that this inequality is equivalent to

>TT.

e@+tVT _ 1 T _q

i

N
a+A o
which is satisfied because function (¢* — 1) /x increases with x. ||
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Proof of Proposition 7. First, for 7 <7, 1=0. Second, for w > 77, f increases with 7 and decreases with a because 1 (T)
increases with 7 and decreasing with «. Furthermore,

dt 1 In(l+6)+ o l-m 7 1 0
—_—=— n ——e" —— | >0,
dr  a+r\a+r Ao 1+¢
oa+A l—neaT.

¢ A T

Proof of Proposition 8. The density pg (¢) is equal to 0 for <7 and is given by

dPg () 7 ae(1—p(T)eMTD)
a 1-n w(T)

for ¢ > 7. Differentiating pp (¢) with respect to ¢ for £ > 7, we get

pe()=

at

dpg(l‘)_ T oe”
dt 1—m w(T)

[(a—i—k),u(T)eMT_’) —a] >0
if and only if
1 o 1
t<T——-In{ ———— ).
A a+r w(T)
We can therefore conclude that pp (¢) is quasiconcave on the interval [f, T ] I

Proof of Proposition 9. The density p(t) is given by

Tae™ ifr<t
p= MT—1)

—at —at 1=p(T)e H 7
wTae Y+ rae mes) ift>1t.
Obviously, for £ <7, p(¢) is decreasing in t. For ¢ > 7, differentiating p (r) with respect to z, we get
dp(t - 1+u(T
—p( ) =rgae | (@+1)e 7’)—017/‘( )
dt w(T)

if and only if

,<T_11H<LM>‘
A a+r wu(T)

I
Proof of Proposition 10. The breakdown probability at ¢ is given by
00 = (1-eT) 1= ().
Notice that Q(¢) is continuous in ¢ because w(¢) is continuous in z. Also, Q(¢) equals 0 for z <7, is strictly positive for all
te (f, T), and equals O for =T Substituting 1 (¢) and differentiating Q (¢) with respect to  for t > 7, we get
o _ _ e M0 (14 (1) —2u(T) -0
dt [1— (D) (1—eT-0)]?

if and only if
1
t<T——In @) .
A 2(T)
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