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PERSUASION MEETS DELEGATION

ANTON KOLOTILIN
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ANDRIY ZAPECHELNYUK
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A principal can restrict an agent’s information (the persuasion problem) or discre-
tion (the delegation problem). We study these two problems under standard single-
crossing assumptions on the agent’s marginal utility. We show that these problems are
equivalent on the set of monotone stochastic mechanisms, implying, in particular, the
equivalence of deterministic delegation and monotone partitional persuasion. We also
show that the monotonicity restriction is superfluous for linear persuasion and linear
delegation, implying their equivalence on the set of all stochastic mechanisms. Finally,
using tools from the persuasion literature, we characterize optimal delegation mecha-
nisms, thereby generalizing and extending existing results in the delegation literature.
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1. INTRODUCTION

A PRINCIPAL HAS TWO WAYS to influence decisions of an agent: delegation and persua-
sion. The delegation literature, initiated by Holmström (1977, 1984), studies the design
of decision rules, with applications to organizational decision processes (Dessein (2002)),
monopoly regulation policies (Alonso and Matouschek (2008)), and international trade
agreements (Amador and Bagwell (2013)). The persuasion literature, set in motion by
Kamenica and Gentzkow (2011), studies the design of information disclosure rules, with
applications to grade disclosure policies (Ostrovsky and Schwarz (2010)), internet adver-
tising strategies (Rayo and Segal (2010)), and forensic tests (Kamenica and Gentzkow
(2011)).

This paper shows that, under standard assumptions, the delegation and persuasion
problems are equivalent, thereby bridging the two strands of literature. The implication is
that the existing insights and results in one problem can be used to understand and solve
the other problem. To connect delegation and persuasion, we introduce a third problem,
called discriminatory disclosure. In general, a discriminatory disclosure problem is less
constrained than a persuasion problem and more constrained than a delegation problem.
Under standard assumptions, all three problems are equally constrained and thus equiv-
alent.
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Persuasion, delegation, and discriminatory disclosure problems describe interactions
between a principal (she) and an agent (he). In persuasion, utilities depend on the agent’s
decision and a state of the world. The principal designs a test that generates informative
messages about the state. The agent observes a message and chooses a decision. In dele-
gation, utilities depend on the agent’s decision and his private type. The principal designs
a menu of decisions or, more generally, a menu of lotteries over decisions. The agent
chooses a lottery from the menu. In discriminatory disclosure, utilities depend on the
state, the agent’s private type, and the agent’s binary action, 0 or 1. The principal designs
a menu of tests. The agent chooses a test from the menu, observes a message from the
chosen test, and chooses action 0 or 1. We assume that the sets of decisions, states, and
types are intervals of the real line, and that the agent’s utility function satisfies standard
single-crossing assumptions.

Appealing to the revelation principle, we restrict attention to direct mechanisms in the
three problems. Our general equivalence result holds for monotone stochastic mecha-
nisms, which have the following interpretation. In persuasion, a higher state generates
a higher lottery over recommended decisions with respect to first-order stochastic dom-
inance. In delegation, a higher reported type is assigned a higher lottery over decisions
with respect to first-order stochastic dominance. In discriminatory disclosure, action 1 is
recommended with a higher probability when the state is higher and the reported type is
lower.

For each primitive of one problem, our equivalence result explicitly constructs an equiv-
alent primitive of the other two problems. Up to normalization, this construction equates
the marginal utilities in persuasion and delegation with the utilities in discriminatory dis-
closure. Moreover, the agent’s type in delegation and discriminatory disclosure becomes
the decision in persuasion, and the state in persuasion and discriminatory disclosure be-
comes the decision in delegation. Intuitively, decisions in delegation and states in per-
suasion play the same role because the principal controls discretion over decisions in
delegation and information about states in persuasion.

To sketch the intuition for the equivalence, consider a monotone mechanism in discrim-
inatory disclosure. On the one hand, this mechanism can be represented as a cutoff-state
mechanism. For each reported type of the agent, a cutoff is drawn from a lottery, and
then the agent is recommended action 1 whenever the state is above the cutoff. Describ-
ing these lotteries over cutoff states as lotteries over decisions, we obtain a delegation
problem. On the other hand, this mechanism can be represented as a cutoff-type mecha-
nism. For each state, a cutoff is drawn from a lottery, and then the agent is recommended
action 1 whenever his reported type is below the cutoff. Describing these lotteries over
cutoff types as lotteries over recommended decisions, we obtain a persuasion problem. In
general, discriminatory disclosure is more constrained than delegation, because it has an
additional obedience constraint that the agent prefers to take the action recommended by
the chosen test. Moreover, discriminatory disclosure is less constrained than persuasion,
because it allows the principal to design a menu of tests rather than a single test. The
most challenging part of our equivalence result is to show that all three problems are in
fact equally constrained when the agent’s utility satisfies single-crossing assumptions.

Much of the literature studies linear problems. In linear persuasion, the marginal util-
ities are linear in the state (e.g., Gentzkow and Kamenica (2016), Kolotilin (2018), and
Dworczak and Martini (2019)). Similarly, in linear discriminatory disclosure, the utilities
are linear in the state (e.g., Kolotilin, Mylovanov, Zapechelnyuk, and Li (2017), Berge-
mann and Morris (2019), and Candogan and Strack (2023)). Finally, in linear delega-
tion, the marginal utilities are linear in the decision (e.g., Alonso and Matouschek (2008),
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Kováč and Mylovanov (2009), and Amador and Bagwell (2013)). By extending Strassen’s
theorem to include an additional monotone likelihood ratio property, we show that the
monotonicity restriction on mechanisms is without loss of generality in linear problems,
and thus our equivalence result holds for all stochastic mechanisms.1 Using tools from
the persuasion literature, we provide necessary and sufficient conditions for the optimal-
ity of a candidate delegation mechanism. For familiar threshold delegation mechanisms,
our conditions coincide with those in Alonso and Matouschek (2008) and Amador and
Bagwell (2013), but we impose weaker differentiability assumptions.

The literature also studies monotone deterministic problems, where the principal de-
signs a monotone partition of the state space in persuasion, a delegation set of decisions
in delegation, and a menu of deterministic cutoff tests in discriminatory disclosure. The
equivalence of these problems immediately follows from our main result. Using standard
conditions for the optimality of full disclosure in persuasion, we provide novel conditions
for the optimality of full discretion in delegation, subsuming existing conditions. Further-
more, by translating a tractable nonlinear setting from persuasion (Rayo (2013), Onuchic
and Ray (2023)) to delegation, we derive new necessary and sufficient conditions for the
optimality of a candidate delegation set in this setting.

Recent literature considers a delegation problem where the agent has an outside option
(Zapechelnyuk (2020), Kartik, Kleiner, and Van Weelden (2021), Amador and Bagwell
(2022), Saran (2024)), whereas there is no such constraint in the standard delegation
problem (Holmström (1977, 1984), Alonso and Matouschek (2008), and Amador and
Bagwell (2013)). Under natural Inada-type conditions on the utilities, our results apply
to standard delegation and delegation with outside option, in both linear and monotone
deterministic cases.

To illustrate our results, we solve a classical monopoly regulation problem in which
a welfare-maximizing regulator (principal) restricts production choices of a monopolist
(agent) who privately knows his cost. This problem has been studied by Baron and Myer-
son (1982) as a mechanism design problem with transfers and by Alonso and Matouschek
(2008) as a delegation problem without transfers. Amador and Bagwell (2022) further
extended the analysis by including the monopolist’s participation constraint.2 We provide
novel and simple conditions for the optimality of a price cap among stochastic or deter-
ministic mechanisms.

2. EXAMPLE

Before presenting our formal setting and results, we illustrate the equivalence between
persuasion and delegation in a simple example.

Consider first a delegation problem. In this problem, a principal commits to a set of
decisions from which a privately informed agent chooses. The utilities depend on the
decision s ∈R and the agent’s private type t ∈ [0�1] that is uniformly distributed on [0�1].
The principal’s utility is V (s� t) and the agent’s utility is U (s� t) = −(s − t)2.

Suppose the principal lets the agent choose one of two decisions, 1/3 or 2/3. The agent
optimally chooses decision 1/3 if his type is t < 1/2 and decision 2/3 if his type is t > 1/2,

1Recently, Kleiner, Moldovanu, and Strack (2021) showed a connection between delegation with quadratic
utilities (a special case of linear delegation) and linear persuasion. See Section 5.4 for a detailed discussion.

2Applying the results of Halac and Yared (2022), the analysis can be further extended to allow for limited
enforcement and money burning.
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FIGURE 1.—The agent’s choices in the delegation and persuasion problems.

as shown in Figure 1(a). The agent’s optimal decision as a function of his type is thus

s∗
D(t) =

{
1/3 if t < 1/2,
2/3 if t > 1/2.

Consider now a persuasion problem. In this problem, the agent is free to choose any
decision s ∈ R and is initially uninformed about the state t ∈ [0�1] that is uniformly dis-
tributed on [0�1]. The principal designs the agent’s information about the state. The util-
ities are the same as in the delegation problem.

Clearly, the principal cannot induce the agent to choose s∗
D(t) for each state t in per-

suasion. Indeed, if the principal lets the agent know only whether t is below or above 1/2,
then the induced decisions are 1/4 and 3/4, as shown in Figure 1(b). Alternatively, the
principal can induce the agent to choose only decisions 1/3 and 2/3. But each of the de-
cisions 1/3 and 2/3 is necessarily induced with positive probabilities for both t > 1/2 and
t < 1/2.

This example illustrates that the instruments of delegation and persuasion work differ-
ently in a given environment. Nevertheless, we show that the persuasion and delegation
problems are mathematically equivalent. To relate these two problems, we swap the roles
of the variables, so the type in delegation is identified with the decision in persuasion, and
the state in persuasion is identified with the decision in delegation. We also appropriately
associate the utilities in the two problems. For simplicity, in this section, we assume that
the agent’s utility is U (s� t) = −(s − t)2 in both delegation and persuasion problems, in
which case we only need to associate the principal’s utilities VD and VP .

For illustration, we now construct a persuasion problem that is equivalent to the del-
egation problem in our example. The first step is to restrict the agent’s decisions in the
delegation problem to an interval. Specifically, we reduce the decision set from R to the
interval [−1�2]. The bounds of this interval are chosen arbitrarily, but far enough, so that
the boundary decisions (and therefore any decisions outside the interval) are never cho-
sen by the agent. Consider now the set of permitted decisions S∗ = {−1�1/3�2/3�2}, as
shown in Figure 2(a). The agent’s optimal decision for each type t is s∗

D(t) as in the origi-

FIGURE 2.—The agent’s choices in the equivalent delegation and persuasion problems.
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nal problem, because s = 1/3 is preferred to s = −1 and s = 2/3 is preferred to s = 2 for
each t ∈ [0�1].

The second step is to swap the roles of s and t. So, in the persuasion problem, the agent
chooses decision t ∈ [0�1], whereas s is a state that is uniformly distributed on [−1�2].
Let the agent’s information be a monotone partition described by the set of cutoff states
S∗ = {−1�1/3�2/3�2}, so the agent knows whether the state is between −1 and 1/3, be-
tween 1/3 and 2/3, or between 2/3 and 2, as shown in Figure 2(b). That is, the permitted
decisions in delegation (dots in Figure 2(a)) become the cutoff states in persuasion (ver-
tical bars in Figure 2(b)). The agent’s optimal decisions are shown as dots in Figure 2(b).
If the agent knows that the state is between 1/3 and 2/3, then his optimal decision is the
posterior expected state 1/2. If the agent knows that the state is between −1 and 1/3,
then his optimal decision is 0, because this is the closest decision in [0�1] to the posterior
expected state −1/3. Similarly, if the agent knows that the state is between 2/3 and 2,
then his optimal decision is 1, because this is the closest decision in [0�1] to the posterior
expected state 4/3. That is, the cutoff types in delegation (vertical bars in Figure 2(a)) be-
come the induced decisions in persuasion (dots in Figure 2(b)). To summarize, the agent’s
optimal decision as a function of the state is

t∗P (s) =

⎧⎪⎨
⎪⎩

0 if s < 1/3,
1/2 if 1/3 < s < 2/3,
1 if s > 2/3.

The key observation is that s∗
D(t) and t∗P (s) are inversely related, as shown in Figure 3.

The last step is to associate the utility functions in the two problems. Let

vP (s� t) = ∂

∂t
VP (s� t) and vD(s� t) = − ∂

∂s
VD(s� t)�

so that vP (s� t) and −vD(s� t) are the principal’s marginal utilities in the persuasion and
delegation problems. Without loss of generality, we normalize the principal’s utilities to
zero from decision t = 0 in persuasion and from decision s = 2 in delegation, VP (0� s) = 0

FIGURE 3.—The agent’s decision functions in the equivalent delegation and persuasion problems.



200 A. KOLOTILIN AND A. ZAPECHELNYUK

and VD(2� t) = 0, so their expected utilities in the two problems are

E[VP] =
∫ 2

−1

∫ t∗P (s)

0
vP (s� t) dt︸ ︷︷ ︸

VP (t∗P (s)�s)

fP (s) ds and E[VD] =
∫ 1

0

∫ 2

s∗D(t)
vD(s� t) ds︸ ︷︷ ︸

VD(s∗D(t)�t)

fD(t) dt�

where fD(t) = 1 is the uniform density on [0�1] and fP (s) = 1/3 is the uniform density on
[−1�2]. Notice that if the principal’s marginal utility in the persuasion problem satisfies

vP (s� t)fP (s) = vD(s� t)fD(t)� (1)

then we obtain E[VP] = E[VD], because the areas over which the marginal utilities are
integrated (shaded areas in Figure 3) are exactly the same.

We have illustrated that, when the principal’s marginal utilities satisfy (1), the delega-
tion problem where the agent chooses from a set of deterministic decisions is equivalent
to the persuasion problem where the agent’s information is a monotone partition of the
state space. Specifically, it is optimal to induce the agent’s decision s∗

D(t) for each type t
in delegation if and only if it is optimal to induce the agent’s decision t∗P (s) for each state
s in persuasion, where t∗P (s) is the inverse of s∗

D(t).
This equivalence holds more generally. It extends to monotone stochastic delegation

and persuasion problems when the agent’s marginal utility is single-crossing. In stochas-
tic delegation, the delegation mechanism is described by a conditional probability func-
tion πD(s|t) = P(decision < s|type = t). Similarly, in stochastic persuasion, the persua-
sion mechanism is described by a conditional probability function πP (t|s) = P(decision >
t|state = s). In what follows, we show that, when (1) holds, mechanism πD is optimal in
the delegation problem if and only if mechanism πP is optimal in the persuasion problem,
where πP (t|s) = πD(s|t).3 To connect delegation and persuasion, we introduce a third
problem, called discriminatory disclosure, and show that all three problems are equivalent.

3. THREE PROBLEMS

This section introduces three principal-agent problems: a persuasion problem, a del-
egation problem, and a discriminatory disclosure problem, which are labeled by letters
P , D, and I in the notation. To simplify the exposition, all functions in the paper are as-
sumed to be bounded, left-continuous in variables labeled s and y , and right-continuous
in variables labeled t and x.

3.1. Persuasion Problem

The agent’s utility UP (s� t) and principal’s utility VP (s� t) depend on the agent’s deci-
sion t ∈ T = [0�1] and the state of the world s ∈ S = [0�1], with the boundary conditions
UP (s�0) = 0 and VP (s�0) = 0 for all s ∈ S. The state is uniformly distributed. The only
substantive assumptions here are that the decision and state are one-dimensional.4 We

3In our example, the agent’s decisions s∗
D(t) and t∗P (s) are deterministic and can be expressed by πD(s|t) and

πP (t|s) that take values 0 or 1. Specifically, πD(s|t) = 1 in the shaded area in Figure 3(a) and πP (t|s) = 1 in the
shaded area in Figure 3(b). When t∗P (s) is the inverse of s∗

D(t), the shaded areas coincide, so πP (t|s) = πD(s|t).
4Suppose that the agent’s utility U (y�x) and principal’s utility V (y�x) depend on decision x ∈ [x�x] and

state y ∈ [y� y], where y has a distribution F (y) = P(state < y). Let F−1 be the generalized inverse of F . By the
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assume that utilities UP (s� t) and VP (s� t) are absolutely continuous in decision t, so that

UP (s� t) =
∫ t

0
uP (s� t̃) dt̃ and VP (s� t) =

∫ t

0
vP (s� t̃) dt̃� (2)

where uP (s� t) and vP (s� t) are marginal utilities. Given our normalizations, a pair (uP� vP)
fully describes the problem.

The principal and agent are initially uninformed about the state. The principal designs
a test that generates informative messages about the state. The agent observes a message,
updates his beliefs about the state, and chooses a decision. By the revelation principle
argument, we can assume that these messages are decision recommendations. That is,
the principal chooses a persuasion mechanism πP (t|s) that provides a stochastic decision
recommendation conditional on each state,

πP (t|s) = P(decision > t|state = s)�

We frequently use Bayes’s rule which states that, for all functions w(s� t), we have∫
S×T

w(s� t)
(−πP (dt|s)

)
ds =

∫
T×S

w(s� t)πP (ds|t)
(−πP (dt)

)
� (3)

where, with abuse of notation, πP (t) = P(decision > t) is the marginal probability and
πP (s|t) = P(state < s|decision = t) is (a version of) the conditional probability induced by
the uniform distribution of s and the conditional probability πP (t|s). We write negative
signs in (3) because πP (t) and πP (t|s) are decreasing in t.5

The key constraint on the persuasion mechanism is that the agent prefers to choose a
recommended decision given his beliefs induced by this recommendation. This incentive-
compatibility constraint is∫

S

UP (s� t)πP (ds|t) ≥
∫
S

UP (s� t̂)πP (ds|t)�

for all t̂ ∈ T and πP-almost all t ∈ T . (ICP)

The agent may have profitable deviations for a πP -negligible set of recommendations.
The principal chooses a persuasion mechanism πP to

maximize WP (πP) =
∫
S×T

VP (s� t)
(−πP (dt|s)

)
ds subject to (ICP).

3.2. Delegation Problem

The agent’s utility UD(s� t) and principal’s utility VD(s� t) depend on the agent’s decision
s ∈ S = [0�1] and the agent’s private type t ∈ T = [0�1], with the boundary conditions

Skorokhod representation, if s is uniformly distributed on [0�1], then y = F−1(s) has distribution F . To obtain
our setting, let t = (x − x)/(x − x), let s be uniformly distributed, let UP (s� t) = U (F−1(s)�x + (x − x)t) −
U (F−1(s)�x), and let VP (s� t) = V (F−1(s)�x + (x − x)t) − V (F−1(s)�x). Kolotilin and Zapechelnyuk (2019,
Section 6.3) illustrated this change of variables in the prosecutor-judge example of Kamenica and Gentzkow
(2011) where F is binary.

5For illustration, we have P(decision ∈ (t1� t2]|state = s) = πP (t1|s) − πP (t2|s) = ∫
(t1�t2](−πP (dt|s)) for all

s ∈ S and all t1� t2 ∈ T such that t1 < t2.
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UD(1� t) = 0 and VD(1� t) = 0 for all t ∈ T . The type is uniformly distributed.6 We assume
that utilities UD(s� t) and VD(s� t) are absolutely continuous in decision s, so that

UD(s� t) =
∫ 1

s

uD(s̃� t) ds̃ and VD(s� t) =
∫ 1

s

vD(s̃� t) ds̃� (4)

where −uD(s� t) and −vD(s� t) are marginal utilities. Given our normalizations, a pair
(uD�vD) fully describes the problem.

We consider a delegation problem where the agent can always choose extreme deci-
sions s = 0 and s = 1. As suggested by the example in Section 2 and shown formally in
Section 5.2 and Kolotilin and Zapechelnyuk (2024, Appendix A), this assumption is typ-
ically non-binding when the agent’s and principal’s utilities are defined on a sufficiently
large interval of decisions, so that the extreme decisions are never chosen. Moreover, this
assumption allows to incorporate additional constraints, such as the agent’s participation
constraint.

Formally, the principal designs a menu of lotteries over decisions which must contain
the two degenerate lotteries that assign probability 1 to decisions s = 0 and s = 1. The
agent privately observes his type and chooses a lottery from the menu. By the revelation
principle argument, we can label each lottery in the menu by the type of the agent who is
recommended to choose this lottery. That is, the principal chooses a delegation mechanism
πD(s|t) that assigns to the agent’s reported type a lottery over decisions,

πD(s|t) = P(decision < s|type = t)�

The key constraint on the delegation mechanism is that the agent prefers to choose a
lottery assigned to his type rather than the lottery assigned to any other type, or decisions
s = 0 and s = 1. This incentive-compatibility constraint is∫

S

UD(s� t)πD(ds|t) ≥ max
{∫

S

UD(s� t)πD(ds|t̂)�UD(0� t)�UD(1� t)
}
�

for all t̂ ∈ T and almost all t ∈ T . (ICD)

The principal chooses a delegation mechanism πD to

maximize WD(πD) =
∫
T×S

VD(s� t)πD(ds|t) dt subject to (ICD)�

3.3. Discriminatory Disclosure Problem

The agent chooses one of two actions, a = 0 or a = 1. The agent’s utility uI (s� t) and
principal’s utility vI (s� t) from a = 1 depend on the state s ∈ S = [0�1] and the agent’s pri-
vate type t ∈ T = [0�1]; the utilities from a= 0 are normalized to zero. The state and type
are independently and uniformly distributed. Given our normalizations, a pair (uI� vI)
fully describes the problem.

The principal and agent are initially uninformed about the state. The principal designs
a menu of tests which generate informative messages about the state. The agent privately

6As in the persuasion problem, the only substantive assumptions here are that the decision and type are
one-dimensional (see Footnote 4).
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observes his type, chooses a test from the menu, observes a message from the chosen test,
updates his beliefs about the state, and chooses a= 0 or a = 1. By the revelation principle
argument, we can label each test in the menu by the type of the agent who is recommended
to choose this test, and we can assume that test messages are action recommendations.
That is, the principal chooses a disclosure mechanism πI that asks the agent to report his
type and then recommends him a stochastic action conditional on his report t and the
state s:

πI (s� t) = P(action = 1|state = s� type = t)�

The key constraint on the disclosure mechanism is that the agent prefers to report his
true type and to choose a recommended action. This incentive-compatibility constraint is∫

S

uI(s� t)πI (s� t) ds ≥
∫
S

uI (s� t)
(
â0

(
1 −πI (s� t̂)

) + â1πI (s� t̂)
)

ds�

for all â0� â1 ∈{0�1}, all t̂ ∈ T , and almost all t ∈ T . (ICI)

The principal chooses a disclosure mechanism πI to

maximize WI (πI) =
∫
T×S

vI (s� t)πI(s� t) ds dt subject to (ICI)�

4. EQUIVALENCE

4.1. Main Result

This section shows that the three problems are equivalent. Our notion of equivalence
identifies the mechanisms in the three problems. For each triple of such mechanisms, this
notion requires that (a) the principal gets the same expected utility in all three problems,
and (b) incentive compatibility either holds or fails simultaneously in all three problems.7

Although persuasion mechanism πP , delegation mechanism πD, and disclosure mecha-
nism πI have different meanings in the three problems, we can identify them as follows:

πP (t|s) = πD(s|t) = πI (s� t)� for all s ∈ S and all t ∈ T � (Eπ)

Since, by the definition of πP and πD, we have πP (1|s) = 0 and πD(0|t) = 0, for (Eπ) to
hold, we impose the following normalizations:

πP (t|0) = πD(s|1) = πI (0� t) = πI (s�1) = 0� for all s ∈ S and all t ∈ T � (5)

In persuasion, πP (t|0) = 0 is w.l.o.g. because state s = 0 occurs with zero probability. In
delegation, πD(s|1) = 0 is w.l.o.g. because type t = 1 occurs with zero probability, and
decision s = 1 is always available to the agent. In discriminatory disclosure, πI (0� t) = 0
and πI (s�1) = 0 are w.l.o.g. because s = 0 and t = 1 occur with zero probability.

Let �P , �D, and �I be the sets of all persuasion mechanisms πP , delegation mecha-
nisms πD, and disclosure mechanisms πI that satisfy (5). Since, by definition, πP (t|s) is

7Our main result holds (with the same proof) under a stronger notion of equivalence (as in Manelli and
Vincent (2010), Gershkov, Goeree, Kushnir, Moldovanu, and Shi (2013), and Kolotilin et al. (2017)), which
preserves not only the expected utility of the principal, but also the interim expected utilities of both the prin-
cipal and the agent.



204 A. KOLOTILIN AND A. ZAPECHELNYUK

decreasing in t, the set �P ⊂ �I consists of all functions in �I that are decreasing in t.
Similarly, since, by definition, πD(s|t) is increasing in s, the set �D ⊂ �I consists of all
functions in �I that are increasing in s.

DEFINITION 1: Two problems (uK�vK) and (uN�vN), with K�N ∈{P�D�I}, are equiva-
lent if, for all πK�πN ∈ �K ∩�N satisfying (Eπ), we have:

(a) WK(πK) = WN (πN);
(b) πK satisfies (ICK) ⇐⇒ πN satisfies (ICN).

All three problems are equivalent if each pair of them is equivalent.

Note that the equivalence between problems (uK�vK) and (uN�vN) is defined on the
restricted set of mechanisms �K ∩�N , because if mechanisms πK ∈ �K and πN ∈ �N sat-
isfy (Eπ), then πK�πN ∈ �K ∩�N . Thus, the equivalence of persuasion and discriminatory
disclosure is defined on the set �P of mechanisms that are decreasing in t, the equivalence
of delegation and discriminatory disclosure is defined on the set �D of mechanisms that
are increasing in s, and the equivalence of persuasion and delegation, as well as the equiv-
alence of all three problems, is defined on the set �M = �P ∩�D of mechanisms that are
increasing in s and decreasing in t.

We refer to mechanisms in �M as monotone. Monotone mechanisms have a natural in-
terpretation. Under a monotone persuasion mechanism, a higher state generates a higher
lottery over recommended decisions with respect to first-order stochastic dominance. Un-
der a monotone delegation mechanism, a higher reported type is assigned a higher lottery
over decisions with respect to first-order stochastic dominance. Under a monotone dis-
closure mechanism, action a= 1 is recommended with a higher probability when the state
is higher and the reported type is lower.

Our main result shows that the three problems are equivalent when the agent’s utility
satisfies the standard single-crossing assumptions (Milgrom and Shannon (1994), Quah
and Strulovici (2012), Anderson and Smith (2024)). A function u(s� t) is:

(i) upcrossing in s if, for each t,

u(s1� t) ≥ (>)0 =⇒ u(s2� t) ≥ (>)0 whenever s2 > s1;
(ii) aggregate downcrossing in t if, for each probability distribution λ ∈ �(S),∫

S

u(s� t1)λ(ds) ≤ (<)0 =⇒
∫
S

u(s� t2)λ(ds) ≤ (<)0 whenever t2 > t1�

In particular, (i) and (ii) hold if u(s� t) is increasing in s and decreasing in t. In persuasion,
upcrossing of uP in s means that the agent’s optimal decision is increasing in the state, and
aggregate downcrossing of uP in t means that the agent’s utility is single peaked in the
decision for any beliefs about the state. In delegation, upcrossing of uD in s means that
the agent’s utility is single peaked in the decision for any type, and aggregate downcrossing
of uD in t means that a higher type of the agent prefers a higher lottery over decisions.

THEOREM 1: A persuasion problem (uP� vP), a delegation problem (uD�vD), and a dis-
criminatory disclosure problem (uI� vI) are equivalent if

uP , uD, and uI are upcrossing in s and aggregate downcrossing in t, (SC)

(uP� vP) = (uD�vD) = (uI� vI)� (E)
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TABLE I

THREE EQUIVALENT PROBLEMS.

Persuasion Delegation Discriminatory Disclosure

Variable s State ∼U[0�1] Decision ∈ [0�1] State ∼U[0�1]
Variable t Decision ∈ [0�1] Type ∼U[0�1] Type ∼U[0�1]
Variable a — — Action ∈{0�1}
Agent’s utility

∫ t

0 u(s� t̃) dt̃
∫ 1
s
u(s̃� t) ds̃ au(s� t)

Principal’s utility
∫ t

0 v(s� t̃) dt̃
∫ 1
s
v(s̃� t) ds̃ av(s� t)

Mechanism π P(decision > t|s) P(decision < s|t) P(action = 1|s� t)

Theorem 1 establishes the equivalence between the three problems on the set of mono-
tone mechanisms. Table I describes three equivalent problems for a given (u�v). Thus, if
a monotone mechanism solves one problem, it also solves the other two equivalent prob-
lems.

Theorem 1 follows from Lemmas 1 and 2 below. Lemma 1 establishes the equivalence
between delegation and discriminatory disclosure problems when the agent’s utilities sat-
isfy single-crossing in s.

LEMMA 1: Problems (uD�vD) and (uI� vI) are equivalent if (uD�vD) and (uI� vI) satisfy
(E) and uD and uI are upcrossing in s.

Lemma 2 establishes the equivalence between persuasion and discriminatory disclosure
problems when the agent’s utilities satisfy aggregate single-crossing in t.

LEMMA 2: Problems (uP� vP) and (uI� vI) are equivalent if (uP� vP) and (uI� vI) satisfy
(E) and uP and uI are aggregate downcrossing in t.

Jointly, the conditions of single-crossing in s and t imposed separately in Lemmas 1 and
2 are precisely the conditions imposed in Theorem 1, in which case all three problems are
equivalent. We prove Lemmas 1 and 2 in Sections 4.2 and 4.3 below.

REMARK 1: In the literature, distributions of random variables are usually not nor-
malized to be uniform on [0�1]. Let F be a distribution of the state y ∈ Y = [y� y] in
persuasion and discriminatory disclosure, and let G be a distribution of the agent’s type
x ∈ X = [x�x] in delegation and discriminatory disclosure. Theorem 1 then applies after
the change of variables as in Footnote 4.8 In particular, if F and G admit strictly positive
densities f and g, then persuasion, delegation, and discriminatory disclosure problems
are equivalent if uP , uD, and uI are upcrossing in y and aggregate downcrossing in x, and

uP (y�x)f (y) = uD(y�x)g(x) = uI (y�x)f (y)g(x)�

vP (y�x)f (y) = vD(y�x)g(x) = vI (y�x)f (y)g(x)�
(6)

where (uP� vP) and (−uD�−vD) are the marginal utilities in persuasion and delegation,
and (uI� vI) are the utilities from action a= 1 in discriminatory disclosure.

8In expressions (2), (4), (5), and (ICD), s = 0 (s = 1) and t = 0 (t = 1) should be replaced with y = y (y = y)
and x= x (x= x).
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4.2. Delegation and Discriminatory Disclosure

To connect delegation and discriminatory disclosure, we represent disclosure mech-
anisms as cutoff-state mechanisms. A disclosure mechanism πI ∈ �I is a deterministic
cutoff-state mechanism if, for each reported type t, there exists a cutoff state st such that
action 1 is recommended if and only if s > st . Under this mechanism, when the agent is
truthful and obedient, the agent’s and principal’s utilities conditional on type t are

US(st� t) =
∫ 1

st

uI(s̃� t) ds̃ and VS(st� t) =
∫ 1

st

vI(s̃� t) ds̃� for all t ∈ T . (7)

A disclosure mechanism πI ∈ �I is a (stochastic) cutoff-state mechanism if, for each re-
ported type, there exists a probability distribution of cutoffs such that action 1 is recom-
mended if and only if the state is above the cutoff.

The key observation is that each disclosure mechanism πI(s� t) that is increasing in s can
be represented as a cutoff-state mechanism where the distribution of cutoffs conditional
on reported type t is P(cutoff < s|type = t) = πI (s� t). Indeed, under such a distribution
of cutoffs, the probability that action 1 is recommended conditional on state s and type t
equals the probability that the cutoff is less than s, which is precisely πI (s� t). When the
agent is truthful and obedient, the agent’s and principal’s utilities conditional on type t
are ∫

S

US(s� t)πI (ds� t) and
∫
S

VS(s� t)πI(ds� t)� for all t ∈ T .

To prove Lemma 1, we show that parts (a) and (b) of Definition 1 hold. To show that part
(a) holds, we show that the utilities conditional on type t are the same in the delegation
problem (uD�vD) = (uI� vI) with πD(s|t) = πI (s� t). To show that part (b) holds, we show
that, in general, the delegation problem is a relaxation of the discriminatory disclosure
problem, but these problems become equivalent if the assumptions of upcrossing and
monotonicity are imposed. Intuitively, when translated to discriminatory disclosure, (ICD)
prohibits two types of deviations: obedient misreporting, where the agent misreports his
type and chooses the recommended action; and disregarding, where the agent disregards
the recommendation and chooses the best of the two actions. In addition, (ICI) prohibits
the third type of deviations: disobedient misreporting, where the agent misreports his type
and chooses the action opposite to the recommendation. Thus, (ICD) is weaker than (ICI).
For the converse, suppose that the agent’s utility uI is upcrossing in s and the disclosure
mechanism πI is increasing in s. Then disobedient misreporting can never be better for
the agent than disregarding. Thus, (ICD) is equivalent to (ICI), and part (b) of Definition 1
holds.9

PROOF OF LEMMA 1: Consider a discriminatory disclosure problem (uI� vI) with πI ∈
�I and a delegation problem (uD�vD) with πD ∈ �D such that

uI (s� t) = uD(s� t)� vI (s� t) = vD(s� t)� and πI (s� t) = πD(s|t)� (ED)

9Lemma 1 continues to hold under a weaker notion of upcrossing defined by Karlin and Rubin (1956):
for each t, u(s1� t) > 0 =⇒ u(s2� t) ≥ 0 whenever s2 > s1. Kolotilin and Zapechelnyuk (2024, Appendix C.1)
provided an example where a mechanism πD in delegation is incentive compatible, but the mechanism πI given
by (ED) in discriminatory disclosure is not, when uD is not upcrossing in s.
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where uD and uI are upcrossing in s. Then, for all t ∈ T , we have∫
S

vI(s� t)πI (s� t) ds =
∫
S

VS(s� t)πI(ds� t) =
∫
S

(∫ 1

s

vI (s̃� t) ds̃
)
πI (ds� t)

=
∫
S

(∫ 1

s

vD(s̃� t) ds̃
)
πD(ds|t) =

∫
S

VD(s� t)πD(ds|t)� (8)

where the first equality is by the representation of the disclosure mechanism as a cutoff-
state mechanism, the second equality is by (7), the third equality is by (ED), and the fourth
equality is by (4). Thus, part (a) of Definition 1 holds, because

WI (πI) =
∫
T×S

vI (s� t)πI(s� t) ds dt =
∫
T×S

VD(s� t)πD(ds|t) dt = WD(πD)�

We now show that part (b) of Definition 1 holds. By the same logic as in (8), for all
â0� â1 ∈{0�1} and all t� t̂ ∈ T ,∫

S

uI(s� t)
(
â0

(
1 −πI (s� t̂)

) + â1πI (s� t̂)
)

ds

= â0

(
UD(0� t) −

∫
S

UD(s� t)πD(ds|t̂)
)

+ â1

∫
S

UD(s� t)πD(ds|t̂)� (9)

Thus, πI satisfies (ICI) iff∫
S

UD(s� t)πD(ds|t) ≥ â0

(
UD(0� t) −

∫
S

UD(s� t)πD(ds|t̂)
)

+ â1

∫
S

UD(s� t)πD(ds|t̂)�

for all â0� â1 ∈{0�1}, all t̂ ∈ T , and almost all t ∈ T .

Note that (ICI) written for all (â0� â1� t̂) such that (â0� â1) �= (1�0) is equivalent to (ICD).
To prove that (ICI) is equivalent to (ICD), suppose by contradiction that πD satisfies (ICD),
but πI violates (ICI) for (â0� â1) = (1�0). That is, there exist t� t̂ ∈ T such that

UD(0� t) −
∫
S

UD(s� t)πD(ds|t̂) >
∫
S

UD(s� t)πD(ds|t)

≥ max
{∫

S

UD(s� t)πD(ds|t̂)�UD(0� t)�0
}
� (10)

where, by (9), the first inequality states that (ICI) fails for (â0� â1) = (1�0), and the second
inequality states that (ICD) holds, given that UD(1� t) = 0 by (4). Next, we have∫

S

uD(s� t)
(
1 −πD(s|t̂)

)
ds =

∫
S

uI (s� t)
(
1 −πI (s� t̂)

)
ds

= UD(0� t) −
∫
S

UD(s� t)πD(ds|t̂) > 0� (11)

where the first equality is by (ED), the second equality is by (9) evaluated at (â0� â1) =
(1�0), and the inequality is by (10). Since uD is upcrossing in s, there exists st ∈ S such that
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uD(s� t) ≤ 0 for s < st and uD(s� t) ≥ 0 for s > st . Observe that πD(st|t̂) < 1, as otherwise
we would have had∫

S

uD(s� t)
(
1 −πD(s|t̂)

)
ds =

∫ st

0
uD(s� t)

(
1 −πD(s|t̂)

)
ds ≤ 0�

where the inequality holds because uD(s� t) ≤ 0 for s < st . Thus,∫
S

uD(s� t)πD(s|t̂) ds = 1
1 −πD(st|t̂)

(∫
S

uD(s� t)
(
πD(s|t̂) −πD(st|t̂)

)
ds

+πD(st|t̂)
∫
S

uD(s� t)
(
1 −πD(s|t̂)

)
ds

)

≥ πD(st|t̂)
1 −πD(st|t̂)

∫
S

uD(s� t)
(
1 −πD(s|t̂)

)
ds ≥ 0� (12)

where the equality holds by rearrangement, the first inequality holds because πD(s|t̂) is
increasing in s and uD(s� t) ≤ (≥)0 for s < (>)st , and the second inequality holds by (11).
Finally, we have

UD(0� t) −
∫
S

UD(s� t)πD(ds|t̂) ds =UD(0� t) −
∫
S

uD(s� t)πD(s|t̂) ds ≤UD(0� t)�

where the equality is by (ED) and (9) with (â0� â1) = (0�1), and the inequality is by (12).
This inequality contradicts (10). Thus, πI satisfies (ICI) iff πD satisfies (ICD). Q.E.D.

4.3. Persuasion and Discriminatory Disclosure

To connect persuasion and discriminatory disclosure, we represent disclosure mech-
anisms as cutoff-type mechanisms. A disclosure mechanism πI ∈ �I is a deterministic
cutoff-type mechanism if, for each state s, there exists a cutoff type ts such that action
1 is recommended if and only if t < ts. Under this mechanism, when the agent is truthful
and obedient, the agent’s and principal’s utilities conditional on state s are

UT (ts� s) =
∫ ts

0
uI(s� t̃) dt̃ and VT (ts� s) =

∫ ts

0
vI(s� t̃) dt̃� for all s ∈ S. (13)

A disclosure mechanism is a (stochastic) cutoff-type mechanism if, for each state, there
exists a probability distribution of cutoffs such that action 1 is recommended if and only
if the type is below the cutoff.

The key observation is that each disclosure mechanism πI (s� t) that is decreasing in t
can be represented as a cutoff-type mechanism where the distribution of cutoffs condi-
tional on state s is P(cutoff > t|state = s) = πI (s� t). Indeed, under such a distribution of
cutoffs, the probability that action 1 is recommended conditional on state s and type t
equals the probability that the cutoff is greater than t, which is precisely πI (s� t). When
the agent is truthful and obedient, the agent’s and principal’s utilities conditional on state
s are ∫

T

UT (s� t)
(−πI (s�dt)

)
and

∫
T

VT (s� t)
(−πI (s�dt)

)
� for all s ∈ S.
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To prove Lemma 2, we show that parts (a) and (b) of Definition 1 hold. To show that
part (a) holds, we show that the utilities conditional on state s are the same in the per-
suasion problem (uP� vP) = (uI� vI) with πP (t|s) = πI(s� t). To show that part (b) holds,
we show that, in general, the discriminatory disclosure problem is a relaxation of the per-
suasion problem, but these problems become equivalent if the assumptions of aggregate
downcrossing and monotonicity are imposed. Intuitively, when translated to discrimina-
tory disclosure, (ICP) prohibits agent’s deviations when he observes the realized cutoff.
In contrast, (ICI) prohibits agent’s deviations when he observes only that his type is above
or below the cutoff. Thus, (ICI) is weaker than (ICP). For the converse, suppose that, in
the discriminatory disclosure problem, the agent’s utility uI is aggregate downcrossing in t
and the disclosure mechanism πI is decreasing in t. Then the agent optimally chooses ac-
tion 1 if and only if his type is below the realized cutoff, regardless of whether he observes
the cutoff or only that his type is below or above the cutoff. Thus, (ICI) is equivalent to
(ICP), and part (b) of Definition 1 holds.10

PROOF OF LEMMA 2: Consider a discriminatory disclosure problem with (uI� vI) and
πI ∈ �I , and a persuasion problem with (uP� vP) and πP ∈ �P such that

uI (s� t) = uP (s� t)� vI (s� t) = vP (s� t)� and πI (s� t) = πP (t|s)� (EP)

where uP and uI are aggregate downcrossing in t. Then, for all s ∈ S, we have∫
T

vI (s� t)πI (s� t) dt =
∫
T

VT (s� t)
(−πI (s�dt)

) =
∫
T

(∫ t

0
vI (s� t̃) dt̃

)(−πI (s�dt)
)

=
∫
T

(∫ t

0
vP (s� t̃) dt̃

)(−πP (dt|s)
) =

∫
T

VP (s� t)
(−πP (dt|s)

)
�

where the first equality is by the representation of the disclosure mechanism as a cutoff-
type mechanism, the second equality is by (13), the third equality is by (EP), and the fourth
equality is by (2). Thus, part (a) of Definition 1 holds, because

WI (πI) =
∫
S×T

vI (s� t)πI(s� t) dt ds =
∫
S×T

VP (s� t)
(−πP (dt|s)

)
ds = WP (πP)�

We show that part (b) of Definition 1 holds. First, suppose that πP satisfies (ICP). Then,
for all t̂ ∈ T and almost all t ∈ T , we have

0 ≤
∫
S

(
UP (s� t) −UP (s� t̂)

)
πP (ds|t) =

∫ t

t̂

(∫
S

uP (s� t̃)πP (ds|t)
)

dt̃�

Thus, as uP is aggregate downcrossing in t, for almost all t ∈ T , we have∫
S

uP (s� t̃)πP (ds|t) ≥ (≤)0 for t̃ < (>)t� (14)

Next, let r denote the realized cutoff type, and define

Aâ0�â1�t̂
(r) = â01{r ≤ t̂}+ â11{r > t̂}� (15)

10Kolotilin and Zapechelnyuk (2024, Appendix C.1) provided an example where a mechanism πI in discrim-
inatory disclosure is incentive compatible, but the mechanism πP given by (EP) in persuasion is not, when uI

is not aggregate downcrossing in t.
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Since the conditional distribution of r given s is 1 −πI (s� r), we have∫
T

Aâ0�â1�t̂ (r)
(−πI (s�dr)

) = â0

(
1 −πI (s� t̂)

) + â1πI (s� t̂)� (16)

For all â0� â1 ∈{0�1}, all t̂ ∈ T , almost all t ∈ T , we have

−
∫
S

uI (s� t)
(
â0

(
1 −πI (s� t̂)

) + â1πI (s� t̂)
)

ds

=
∫
S×T

uI (s� t)Aâ0�â1�t̂
(r)πI (s� dr) ds

=
∫
S×T

uP (s� t)Aâ0�â1�t̂(r)πP (dr|s) ds =
∫
T

Aâ0�â1�t̂ (r)
(∫

S

uP (s� t)πP (ds|r)
)
πP (dr)

≥
∫
T

1{r > t}
(∫

S

uP (s� t)πP (ds|r)
)
πP (dr) =

∫
S×T

uP (s� t)1{r > t}πP (dr|s) ds

=
∫
S×T

uI (s� t)1{r > t}πI(dr|s) ds =
∫
S×T

uI (s� t)A0�1�t(r)πI (s�dr) ds

= −
∫
S

uI(s� t)πI (s� t) ds�

where the first and last equalities are by (16), the second and fifth equalities are by (EP),
the third and fourth equalities are by Bayes’s rule (3), the inequality is by (14), and the
sixth equality is by (15) with (â0� â1� t̂) = (0�1� t). Consequently, if πP satisfies (ICP), then
πI satisfies (ICI).

Second, suppose that πI satisfies (ICI). Then, for all t̂ ∈ T and almost all t > t̂, we have

0 ≥
∫
S

uI (s� t)
(
πI (s� t̂) −πI (s� t)

)
ds =

∫
S

uP (s� t)
(
πP (t̂|s) −πP (t|s)

)
ds

=
∫
S

∫
(t̂�t]

uP (s� t)
(−πP (dt̃|s)

)
ds =

∫
(t̂�t]

∫
S

uP (s� t)πP (ds|t̃)
(−πP (dt̃)

)
� (17)

where the inequality is by (ICI) with (â0� â1) = (0�1), the first equality is by (EP), the
second inequality is by the definition of πP , and the third equality is by Bayes’s rule (3).
Similarly, for almost all t ∈ T , we have

0 ≥
∫
S

uI(s� t) ds −
∫
S

uI (s� t)πI(s� t) ds =
∫
S

uP (s� t)
(
1 −πP (t|s)

)
ds

=
∫
S

∫
[0�t]

uP (s� t)
(−πP (dt̃|s)

)
ds =

∫
[0�t]

∫
S

uP (s� t)πP (ds|t̃)
(−πP (dt̃)

)
� (18)

where the inequality is by (ICI) with (â0� â1) = (1�1), the first equality is by (EP), the
second inequality is by the definition of πP , and the third equality is by Bayes’s rule (3).

Thus, by (17) and (18), for πP -almost all t̃ and all ε > 0, there exists t ∈ [t̃� t̃ + ε] such
that ∫

S

uP (s� t)πP (ds|t̃) ≤ 0�
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By aggregate downcrossing of uP in t, we obtain∫
S

uP (s� t)πP (ds|t̃) ≤ 0 for πP -almost all t̃ and all t > t̃. (19)

By symmetric arguments, we obtain∫
S

uP (s� t)πP (ds|t̃) ≥ 0 for πP -almost all t̃ and all t < t̃. (20)

Consequently, for πP -almost all t̃ ∈ T and all t̂ ∈ T , we obtain

0 ≤
∫ t̃

t̂

(∫
S

uP (s� t)πP (ds|t̃)
)

dt =
∫
S

(
UP (s� t̃) −UP (s� t̂)

)
πP (ds|t̃)�

where the inequality is by (19) and (20), and the equality is by (2). Consequently, if πI

satisfies (ICI), then πP satisfies (ICP). Q.E.D.

5. LINEAR CASE

In this section, we consider a popular subclass of the persuasion, delegation, and dis-
criminatory disclosure problems, referred to as linear problems. For K ∈{P�D�I}, a prob-
lem (uK�vK) is linear if11

uK(s� t) = c(s) − b(t) and vK(s� t) = αc(s) − d
(
b(t)

)
� (L)

where α ∈ R, b and c are continuous and strictly increasing, d is continuous, and

c(0) ≤ b(0) < b(1) ≤ c(1)�

Clearly, if uK satisfies (L), then it satisfies (SC), so all our results apply.
In linear persuasion and linear discriminatory disclosure, the (marginal) utilities are

linear in an increasing transformation c of the state. Similarly, in linear delegation, the
marginal utilities are linear in an increasing transformation c of the decision. Intuitively,
the linear problems are tractable, because the analysis depends only on the mean value of
c(s). For illustration, in linear persuasion, if the state is known to be in an interval (s1� s2],
then the agent-optimal and principal-optimal decisions depend only on

∫ s2
s1
c(s) ds/(s2 −

s1). Similarly, in linear delegation, if the only permitted decisions are s1 and s2, then the
agent-optimal and principal-optimal assignments of types to these decisions depend only
on

∫ s2
s1
c(s) ds/(s2 − s1).

In the persuasion literature, the state is typically defined as y = c(s), which has a distri-
bution F (y) = P(c(s) < y) = c−1(y) on the interval Y = [y� y] = [c(0)� c(1)]. Analogously,
in the delegation literature, the type is typically defined as x = b(t), which has a distribu-
tion G(x) = P(b(t) ≤ x) = b−1(x) on the interval X = [x�x] = [b(0)� b(1)]. Finally, in the

11Many of our results continue to hold under the weaker assumption that b and c are non-decreasing and
are not necessarily continuous. Moreover, condition c(0) ≤ b(0) < b(1) ≤ c(1) can be relaxed. Indeed, in
persuasion, decisions t such that b(t) < c(0) and b(t) > c(1) can never be chosen. In delegation, types t such
that b(t) < c(0) and b(t) > c(1) always choose decisions 0 and 1, respectively. In discriminatory disclosure,
types t such that b(t) < c(0) and b(t) > c(1) always choose actions 1 and 0, respectively. Consequently, w.l.o.g.,
we can remove all t such that b(t) /∈ [c(0)� c(1)] from consideration.
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discriminatory disclosure literature, both the state and the type are defined as y = c(s)
and x = b(t), which have distributions F and G. Since c and b are strictly increasing and
continuous, F and G are continuous and have full support on Y . In this section, we use
the transformed state y and type x in line with the literature.

5.1. Monotonization

This section shows that the restriction to monotone mechanisms is w.l.o.g. in the three
linear problems.12 Specifically, for each incentive-compatible mechanism, there exists
an incentive-compatible monotone mechanism such that the expected utilities are the
same.13

THEOREM 2: For each K ∈ {P�D�I}, each (uK�vK) that satisfies (L), and each πK ∈ �K

that satisfies (ICK), there exists a monotone mechanism π̂K ∈ �M ⊂ �K that satisfies (ICK)
such that WK(π̂K) = WK(πK).

It suffices to prove Theorem 2 for discriminatory disclosure, K = I, as then the result
for persuasion, K = P , and delegation, K = D, follows from Lemmas 2 and 1.14

Before proving Theorem 2 for K = I, we introduce notation and present two key lem-
mas. We use the transformed state and type, y = c(s) and x = b(t), which have distribu-
tions F and G. The agent’s and principal’s utilities from a = 1 given state y and type x
are

u(y�x) = y − x and v(y�x) = αy − d(x)� for all y ∈ Y and all x ∈ X .

By (L), X ⊆ Y , so Y is a common interval domain for y and x. Consider a mechanism
π(y�x) in variables y and x on Y ×Y that satisfies the incentive-compatibility constraint∫

Y

(y − x)π(y�x)F (dy) ≥
∫
Y

(y − x)
(
â0

(
1 −π(y� x̂)

) + â1π(y� x̂)
)
F (dy)�

for all â0� â1 ∈{0�1} and all x� x̂ ∈ Y� (IC)

When the agent’s type is x, he chooses action 0 with interim probability Hπ(x) and
obtains interim utility Uπ (x) given by

Hπ(x) =
∫
Y

(
1 −π(y�x)

)
F (dy)�

Uπ(x) =
∫
Y

(y − x)π(y�x)F (dy)� for all x ∈ Y�

(21)

12Kolotilin and Zapechelnyuk (2024, Appendix C.2) showed that the restriction to monotone mechanisms is
not w.l.o.g. in nonlinear problems. In fact, in nonlinear persuasion, optimal mechanisms are often nonmono-
tone (Rayo and Segal (2010), Goldstein and Leitner (2018), Guo and Shmaya (2019), Kolotilin, Corrao, and
Wolitzky (2024)).

13This result (with the same proof) extends to the stronger notion of equivalence stated in Footnote 7. That
is, for each incentive-compatible mechanism, there exists an incentive-compatible monotone mechanism that
preserves the interim expected utilities of both the principal and the agent.

14Indeed, consider a persuasion problem (uP� vP) with mechanism πP that satisfies (ICP). By Lemma 2, in
the discriminatory disclosure problem (uI� vI) = (uP� vP), the disclosure mechanism πI (t� s) = πP (t|s) satisfies
(ICI) and WI (πI) = WP (πP). By Theorem 2 for K = I, there exists a monotone disclosure mechanism π̂I

that satisfies (ICI) and WI (π̂I) = WI (πI). Again by Lemma 2, the monotone persuasion mechanism π̂P (t|s) =
π̂I (s� t) satisfies (ICP) and WP (π̂P) =WI (π̂I). The argument for K =D is analogous.
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and the principal obtains interim utility Vπ(x) given by

Vπ(x) =
∫
Y

(
αy − d(x)

)
π(y�x)F (dy)

= αUπ (x) + (
αx− d(x)

)(
1 −Hπ (x)

)
� for all x ∈ X� (22)

Since the agent’s interim utility is maximized under full disclosure of y , we have

Uπ(x) =
∫
Y

(y − x)π(y�x)F (dy) ≤
∫
Y

(y − x)1{y > x}F (dy)

=
∫ y

x

(y − x)F (dy) =
∫ y

x

(
1 − F (y)

)
dy� for all x ∈ Y� (23)

where the first and second equalities are by definition, the inequality is by pointwise max-
imization, and the last equality is by integration by parts.

Now, we present two key lemmas. Lemma 3 is the envelope characterization of incen-
tive compatibility (Kolotilin et al. (2017, Lemma 1)).

LEMMA 3—(Kolotilin et al. (2017)): A mechanism π satisfies (IC) if and only if

Hπ is increasing�

Uπ(y) =
∫
Y

(
1 − F (y)

)
dy�

Uπ(x) =
∫ y

x

(
1 −Hπ(x̃)

)
dx̃� for all x ∈ Y�

(24)

Lemma 4 is the extension of Strassen’s theorem with the additional monotone likeli-
hood ratio property.15

 Strassen (1965) showed that if a distribution F is a mean-preserving
spread of a distribution H, then there exists a joint distribution P of (x� y) such that
(i) the marginal distributions of x and y are H and F and (ii) the expected value of y
given x is x, meaning that (x� y) is a martingale. Müller and Rüschendorf (2001, Theo-
rem 4.1) provided a constructive proof of Strassen’s theorem. Importantly, they showed
that their constructed conditional distribution P(y|x) increases in x with respect to first-
order stochastic dominance. We show that their P(y|x) increases in x with respect to the
likelihood ratio order.16

LEMMA 4: Let F and H be two distributions on Y = [y� y] ⊂R that satisfy

∫ y

x

(
1 −H(x̃)

)
dx̃≤

∫ y

x

(
1 − F (x̃)

)
dx̃� for all x ∈ Y , with equality at x= y� (MPS)

15The proof of Lemma 4 and other omitted proofs are in Kolotilin and Zapechelnyuk (2024, Appendix B).
16One difficulty is that the likelihood ratio order is not an integral stochastic order, so we cannot use standard

results on monotonicity of Markov processes (e.g., Müller and Stoyan (2002, Section 5.2)), as Müller and
Rüschendorf did.
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There exists a conditional distribution P(y|x), with x� y ∈ Y , that satisfies∫
[y�y]

P(y|x)H(dx) = F (y)� for all y ∈ Y , (25)

∫
[y�y]

yP(dy|x) = x� for all x ∈ Y , (26)

∫
[y1�y2]

P(dy|x1)
∫

[y3�y4]
P(dy|x2) ≥

∫
[y1�y2]

P(dy|x2)
∫

[y3�y4]
P(dy|x1)�

for all y ≤ x1 < x2 ≤ y and all y ≤ y1 < y2 < y3 < y4 ≤ y. (27)

The last two ingredients for the proof of Theorem 2 are two simple claims. Claim 1 is a
straightforward implication of Lemmas 3 and 4.

CLAIM 1: For each distribution H that satisfies (MPS), there exists a mechanism π̂(y�x)
that is increasing in y and decreasing in x, satisfies (IC), and Hπ̂(x) =H(x) for all x ∈ Y .

Indeed, if H satisfies (MPS), by Lemma 4, there exists a conditional distribution P(y|x)
that satisfies (25)–(27). By (27), P(y|x) is increasing in x with respect to the likelihood
ratio order. Since the likelihood ratio order is invariant under a permutation of variables
x and y (e.g., Müller and Stoyan (2002, Theorem 3.10.14)), it follows that a conditional
distribution P(x|y), derived by Bayes’s rule from P(y|x) and H(x), is increasing in y with
respect to the likelihood ratio order. Therefore, it is also increasing in y with respect
to first-order stochastic dominance (e.g., Müller and Stoyan (2002, Theorem 3.10.16)),
meaning that P(x|y) is decreasing in y .

Since a distribution P(x|y) is increasing in x, it follows that the disclosure mechanism
π̂ given by

π̂(y�x) = 1 − P(x|y)� for all y�x ∈ Y� (28)

is increasing in y and decreasing in x. Moreover, it is easy to check that Hπ̂(x) = H(x)
and Uπ̂(x) = ∫ y

x
(1 −H(x̃)) dx̃ for all x ∈ Y , so π̂ satisfies (IC) by Lemma 3.

Claim 2 shows that, for each disclosure mechanism πI that satisfies (ICI), there exists
a mechanism π(y�x) that represents πI (s� t) in variables y and x on Y ×Y and satisfies
(IC). To prove Claim 2, we extend the set of types from X to Y , and let each type x ∈ Y of
the agent choose a report x̂ ∈ X and actions â0� â1 ∈{0�1} to maximize his interim utility.

CLAIM 2: For each mechanism πI that satisfies (ICI), there exists a mechanism π on
Y ×Y that satisfies (IC) and π(y�x) = πI (F (y)�G(x)) for all y ∈ Y and all x ∈ [x�x).

We finally prove Theorem 2. Consider any πI that satisfies (ICI). By Claim 2, there
exists π on Y × Y that represents πI in variables y and x, and satisfies (IC). As x = x
occurs with zero probability, the principal obtains the same expected utility under π and
πI . By (23) and Lemma 3, H = Hπ satisfies (MPS). By Claim 1, there exists a monotone
π̂ that satisfies (IC), and Hπ̂ = Hπ . Then, by Lemma 3 and (22), Uπ̂ = Uπ and Vπ̂ = Vπ .
Consequently, the principal obtains the same expected utility under π̂ and π:

W (π̂) =
∫
X

Vπ̂(x)G(dx) =
∫
X

Vπ(x)G(dx) =W (π)�
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Finally, π̂I given by π̂I (s� t) = π̂(c(s)� b(t)) for all s ∈ S and all t ∈ T is monotone, satisfies
(ICI), and the principal obtains the same expected utility under π̂I and π̂.17

5.2. Compactification

In our delegation problem presented in Section 3.2, the principal has the constraint that
the two extreme decisions, s = 0 and s = 1, are always available to the agent. However,
the principal has no such constraint in a standard delegation setting (Holmström (1977,
1984), Alonso and Matouschek (2008), Amador and Bagwell (2013)), and only one such
decision is available in a delegation setting where the agent has an outside option (Kar-
tik, Kleiner, and Van Weelden (2021), Amador and Bagwell (2022), Saran (2024)). This
section shows that, under natural Inada-type assumptions, which are satisfied in the del-
egation literature, both standard delegation and delegation with outside option can be
represented as our delegation problem.

In all delegation settings we consider, the agent’s decision s belongs to a closed interval
of the real line, S ⊆ R. We use the transformed type, x = b(t), which has distribution G
on X = [x�x]. Other primitives are the same as in Section 3.2. Letting c be defined on S,
with [0�1] ⊂ S, the agent’s and principal’s marginal utilities satisfy (L), so, by (4), up to
type-dependent constants, their utilities are given by

U (s�x) = xs −C(s) and V (s�x) = d(x)s − αC(s)�

where C(s) =
∫ s

0
c(s̃) ds̃�

(29)

For convenience, we change the variable y = c(s). The (transformed) decisions y are
in the set Y0 = c(S), with X ⊂ Y0 by (L). In the transformed variables, the agent’s and
principal’s utilities are given by

U (y�x) = xc−1(y) −C
(
c−1(y)

)
and V (y�x) = d(x)c−1(y) − αC

(
c−1(y)

)
�

for all y ∈ Y0 and all x ∈ X�
(30)

In standard delegation, the set of decisions is the real line S = R, so that Y0 = (y
0
� y0) =

c(R), and the agent has no outside option. So a delegation mechanism π must satisfy only
the incentive-compatibility constraint∫

Y0

U (y�x)π(dy|x) ≥
∫
Y0

U (y�x)π(dy|x̂)� for all x� x̂ ∈ X . (IC0)

In delegation with outside option, the set of decisions is a ray S = [s�∞), so that Y0 =
[y� y0) = c([s�∞)), and the agent can always choose the outside option y = c(s). So a
delegation mechanism π must satisfy the incentive-compatibility constraint (IC0) and the
participation constraint∫

Y0

U (y�x)π(dy|x) ≥U (y�x)� for all x ∈ X . (IC1)

17By construction, π̂I (s� t) is right-continuous in t and satisfies π̂I (s�1) = 0. By monotonicity of π̂I , π̃I given
by π̃I (s� t) = lims̃↑s π̂I (s̃� t) for all s ∈ (0�1] and π̃(0� t) = 0 is left-continuous in s and coincides with π̂I almost
everywhere. So, by redefining π̂I in this way if necessary, w.l.o.g., we can assume that π̂I (s� t) is left-continuous
in s, right-continuous in t, and satisfies (5).
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In our delegation problem of Section 3.2, the set of decisions is a compact interval
S = [s� s], so that Y0 = [y� y] = [c(s)� c(s)], and the agent can always choose the extreme
decisions y and y .18 So a delegation mechanism π must satisfy the incentive-compatibility
constraint (IC0), the participation constraint (IC1), and the additional constraint∫

Y0

U (y�x)π(dy|x) ≥U (y�x)� for all x ∈X . (IC2)

To show that both standard delegation and delegation with outside option can be rep-
resented as our delegation, for each incentive-compatible mechanism π we find another
incentive-compatible mechanism π̃ with support on a compact interval Y = [y� y] such
that the agent’s and principal’s interim utilities are the same:∫

Y

U (y�x)π̃(dy|x) =
∫
Y0

U (y�x)π(dy|x)� for all x ∈X,

∫
Y

V (y�x)π̃(dy|x) =
∫
Y0

V (y�x)π(dy|x)� for all x ∈ X.
(31)

We first show that standard delegation can be represented as our delegation if
U (y�x) → −∞ and V (y�x) → −∞ for all x ∈ X as y → y0 and as y → y

0
. Say that a

mechanism π is undominated by V0 :X →R if∫
Y0

V (y�x)π(dy|x) ≥ V0(x)� for some x ∈ X .

From the principal’s optimization perspective, it is w.l.o.g. to consider undominated
mechanisms. To this end, we can set V0 to be the principal’s interim or expected utility
if a decision y∗ ∈ Y0 is implemented for all reports of the agent,

V0(x) = V
(
y∗�x

)
or V0(x) =

∫
X

V
(
y∗� x̃

)
G(dx̃)� for some y∗ ∈ Y0� (32)

PROPOSITION 1: Suppose that Y0 = (y
0
� y0) ⊆R, α > 0, and

y
0
< x< y0 and αy

0
< d(x) <αy0� for all x ∈ X� (33)

For each continuous V0, there exist y� y ∈ Y0 (with y < x < x < y) such that the following
holds. For each mechanism π that satisfies (IC0) and is undominated by V0, there exists
another mechanism π̃ with support in Y = [y� y] that satisfies (IC0)–(IC2) (with strict in-
equalities in (IC1) and (IC2)) and (31).

We now show that delegation with outside option can be represented as our delegation
if U (y�x) → −∞ for all x ∈X as y → y0.

PROPOSITION 2: Suppose that Y0 = [y� y0) ⊂R and

y ≤ x < y0� for all x ∈X . (34)

18In Section 3.2, w.l.o.g., we normalized [s� s] = [0�1], but here it is convenient not to use this normalization.
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Then there exists y ∈ Y0 (with y > x) such that the following holds. For each mechanism π
that satisfies (IC0) and (IC1), there exists another mechanism π̃ with support in Y = [y� y]
that satisfies (IC0)–(IC2) (with strict inequality in (IC2)) and (31).

5.3. Optimization

Using the tools from the literature on linear persuasion, this section fully characterizes
optimal mechanisms in standard delegation and delegation with outside option. Let the
utilities be given by (30), and suppose that the type x has distribution G that admits a
càdlàg density g, meaning that g is right-continuous and has left limits on X = [x�x].

We now impose assumptions of Section 5.2 to represent standard delegation and del-
egation with outside option as our delegation problem with an appropriately defined de-
cision set Y = [y� y] ⊂ Y0. Our analysis then applies simultaneously to both variants of
the delegation problem, with the understanding that Y differs in the two variants. In fact,
since delegation with outside option features an additional constraint (namely, (IC1)), we
can always define Y to be larger in standard delegation than in delegation with outside
option.

First, consider standard delegation. Suppose that the assumptions of Proposition 1 hold
with V0 given by (32). Let Y be as in Proposition 1. W.l.o.g., we restrict attention to del-
egation mechanisms π(y|x) in variables y and x on Y × X that satisfy (IC0)–(IC2), with
strict inequalities in (IC1) and (IC2). Let �0 be the set of all such delegation mechanisms.

Second, consider delegation with outside option y . Suppose that the assumptions of
Proposition 2 hold. Let Y be as in Proposition 2. W.l.o.g., we restrict attention to delega-
tion mechanisms π(y|x) in variables y and x on Y ×X that satisfy (IC0)–(IC2), with strict
inequality in (IC2). Let �1 be the set of all such delegation mechanisms.

By (30), the agent’s and principal’s utilities, up to a strictly increasing affine transfor-
mation, are given by

U (y�x) =
∫ y

y

(ỹ − x)F (dỹ) and V (y�x) =
∫ y

y

(
αỹ − d(x)

)
F (dỹ)�

where F (y) = c−1(y) − c−1(y)

c−1(y) − c−1(y)
�

(35)

Next, define the backward bias ν : Y → R as

ν(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if z ∈ [y�x],∫ z

x

(
αz − d(x̃)

)
g(x̃) dx̃ if z ∈ (x�x],

αz −
∫ x

x

d(x̃)g(x̃) dx̃ if z ∈ (x� y]�

(36)

The backward bias was introduced by Alonso and Matouschek (2008) and is frequently
used in the literature on linear delegation.19 In the equivalent persuasion problem, the

19The utilities in Alonso and Matouschek (2008) are given by (29) with c(s) = s and α = 1. In this case,
the agent’s and principal’s preferred decisions are x and d(x). Alonso and Matouschek (2008) defined the
backward bias as ν(z) =G(z)(z −EG[d(x)|x ≤ z]) for all z ∈ Y , which coincides with (36).
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same function ν represents the principal’s indirect utility, which is widely used in the liter-
ature on linear persuasion. Indeed, in the equivalent persuasion problem, the agent’s and
principal’s utilities are given by

UP (y�x) =
∫ x

x

(y − x̃)g(x̃) dx̃ and VP (y�x) =
∫ x

x

(
αy − d(x̃)

)
g(x̃) dx̃� (37)

and the state y has distribution F . For each distribution λ ∈ �(Y ), we have Eλ[UP (y�x)] =
UP (Eλ[y]�x) and Eλ[VP (y�x)] = VP (Eλ[y]�x), so the utilities depend on posterior beliefs
only through the posterior mean. Each posterior mean z ∈ Y induces the agent to choose
decision x∗(z) = x if z ≤ x, decision x∗(z) = z if z ∈ (x�x], and decision x∗(z) = x if
z > x. Thus, the principal’s indirect utility VP (z�x∗(z)) is precisely ν(z) given by (36).

Consider a delegation mechanism π ∈ �0 or π ∈ �1. By Lemma 1 and Claim 2, π can
be extended to Y ×Y such that (IC0)–(IC2) hold for all x� x̂ ∈ Y (rather than just in X).
Next, let a distribution Hπ on Y be given by20

Hπ(x) =
∫
Y

(
1 −π(y|x)

)
F (dy)� for all x ∈ Y , (38)

and let supp(Hπ) denote the support of Hπ .
We now present two simple claims which show that the delegation problem can be

solved by standard methods from the persuasion literature. Claim 3 shows that the prin-
cipal’s expected utility can be expressed as

∫
Y
ν(x)Hπ (dx).

CLAIM 3: For j = 0�1,

W (π) =
∫
Y

ν(x)Hπ (dx)� for all π ∈ �j. (39)

Claim 4 shows that the delegation problem can be expressed as a maximization over
distributions H such that F is a mean-preserving spread of H. Although Claim 4 takes
the same form for standard delegation and delegation with outside option, the optimal
mechanisms are not the same, because the set Y and thus condition (MPS) differ in the
two variants.

CLAIM 4: For j = 0�1, mechanism π maximizes W on �j if and only if Hπ maximizes∫
Y
ν(x)H(dx) over distributions H that satisfy (MPS).

We now characterize optimal delegation mechanisms by adapting Theorem 6 in Dwor-
czak and Kolotilin (2024) from persuasion to delegation, and generalizing it to allow for
nondifferentiable functions ν and nonmonotone mechanisms π. Let ν′ be the set of all
generalized derivatives of ν:

ν′(x) =
[

lim inf
ε→0

ν(x+ ε) − ν(x)
ε

� lim sup
ε→0

ν(x+ ε) − ν(x)
ε

]
� for all x ∈ Y�

As d is continuous and g is càdlàg, ν given by (36) has left and right derivatives, so ν′(x)
is simply the interval between ν′(x−) and ν′(x+).

20It follows from Lemmas 1 and 3, and Claim 2 that Hπ is a distribution on Y .
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THEOREM 3: For j = 0�1, mechanism π maximizes W on �j if and only if there exists a
selection ν′ from ν′ such that p : Y → R given by

p(y) = sup
x∈supp(Hπ )

(
ν(x) + ν′(x)(y − x)

)
� for all y ∈ Y� (40)

satisfies

p(y) ≥ ν(y)� for all y ∈ Y� (41)∫
Y

p(y)F (dy) =
∫
Y

ν(x)Hπ (dx)� (42)

Condition (42) in Theorem 3 can be simplified when π ∈ �j is monotone (i.e., π(y|x)
is decreasing in x for all y ∈ Y ) or deterministic (i.e., π(y|x) ∈ {0�1} for all y ∈ Y and all
x ∈ X). For a monotone π ∈�j , define a joint distribution Jπ ∈ �(Y ×Y ) as

Jπ(y�x) =
∫ y

y

(
1 −π(ỹ|x)

)
F (dỹ)� for all (y�x) ∈ Y ×Y . (43)

For a deterministic π ∈ �j , there exists a corresponding compact delegation set B ⊂
Y and agent’s best-response function y∗

B(x) ∈ arg maxy∈B U (y�x) such that π(y|x) =
1{y∗

B(x) < y} for all y ∈ Y and all x ∈X . For each y ∈ Y , let

zB(y) = inf
{
ỹ ∈ B ∪{y} : ỹ ≥ y

}
and zB(y) = sup

{
ỹ ∈ B ∪{y} : ỹ < y

}
�

with the convention zB(y) = y , and let

x∗
B(y) = EF

[
y|y ∈ [

zB(y)� zB(y)
]] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
y if zB(y) = zB(y)�∫ zB (y)

zB (y)
yF (dy)

F
(
zB(y)

) − F
(
zB(y)

) if zB(y) < zB(y).
(44)

REMARK 2: For j = 0�1, if π ∈�j is monotone, then condition (42) simplifies to

p(y) = ν(x) + ν′(x)(y − x)� for Jπ-almost all (y�x) ∈ Y ×Y� (45)

For j = 0�1, if π ∈ �j is deterministic with a corresponding compact delegation set B,
then condition (42) simplifies to

p(y) = ν
(
x∗
B(y)

) + ν′(x∗
B(y)

)(
y − x∗

B(y)
)
� for all y ∈ Y� (46)

Theorem 3 with Remark 2 easily yields the optimality conditions for threshold delega-
tion, which permits all decisions on one side of a given threshold. Consider floor delegation
which permits all decisions above y∗. Recall that the set of decisions is Y0 = (y

0
� y0) in

standard delegation and Y0 = [y� y0) in delegation with outside option y . Let g be contin-
uous on X , so that ν′(x) is a singleton for all x /∈ {x�x}. First, Theorem 3 with Remark 2
immediately implies that full discretion (i.e., y∗ ≤ x) is optimal if and only if ν is convex
on Y0. Second, Corollary 1 shows when nontrivial floor delegation (i.e., y∗ > x) is optimal.
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COROLLARY 1: Let y∗ ∈ (x� y0). Delegation set {y} ∪ [y∗� y0) in delegation with outside
option y (delegation set [y∗� y0) in standard delegation) is optimal if and only if

(a) ν is convex on [y∗� y0),
(b) there exists ν′(z∗) ∈ ν′(z∗) such that ν(y) ≤ ν(z∗) + ν′(z∗)(y − z∗) for all y ≤ y∗ with

equality at y = y∗,
where z∗ = ∫ y∗

y
yF (dy)/(F (y∗) − F (y)) in delegation with outside option (z∗ ∈ (y

0
�x) in

standard delegation).

5.4. Related Literature on Linear Delegation

Recently, Kleiner, Moldovanu, and Strack (2021) showed that a standard delegation
problem with quadratic utilities (a special case of linear delegation with F (y) = y) simpli-
fies to maximizing

∫
ν(x)H(dx) over H satisfying (MPS), thereby indirectly establishing

the connection to linear persuasion where the same maximization problem arises (e.g.,
Kolotilin (2018, Proposition 2)). Instead, our equivalence applies to the general class of
linear persuasion, linear delegation (covering both standard delegation and delegation
with outside option), and linear discriminatory disclosure problems. Moreover, our equiv-
alence identifies a direct mapping between the primitives of the equivalent problems (see
Table I). Finally, thanks to Theorem 2, our equivalence holds on the space of primitive
mechanisms π, and thus on a narrower space of induced distributions H, as in Kleiner,
Moldovanu, and Strack. The latter space is narrower, as every π induces a unique H,
but not every H is induced by a unique π. In particular, there exist H, distinct πP ∈ �P

and πD ∈ �D inducing H, and ν such that H uniquely maximizes
∫
ν(x)H(dx) subject to

(MPS), but πP /∈ �D and πD /∈ �P . Thus, the equivalence is stronger on the space of π
than on the space of H. Our proof of the equivalence crucially relies on our Theorems 1
and 2, which have no counterparts in Kleiner, Moldovanu, and Strack.

The delegation literature has largely focused on the optimality of threshold delega-
tion21 in standard delegation, which corresponds to censorship in linear persuasion.22 The
most general result is due to Amador and Bagwell (2013, Propositions 1 and 2).23 Our ap-
proach easily yields essentially the same result but under weaker differentiability assump-
tions (Corollary 1). We allow for stochastic mechanisms, whereas Amador and Bagwell
(2013) restricted to deterministic mechanisms but permitted money burning.24 However,
allowing for money burning does not change our conditions for the optimality of floor del-
egation if α ≤ 1, in which case money burning is a costlier incentive tool than stochastic
mechanisms.

Special cases of linear delegation with outside option are studied in Zapechelnyuk
(2020), Kartik, Kleiner, and Van Weelden (2021), Amador and Bagwell (2022), and Saran

21The delegation literature also shows when interval delegation (which permits all decisions in an interval)
and gap delegation (which prohibits all decisions in an interval) are optimal. These results easily follow from
our Theorem 3 with Remark 2 (see Kolotilin and Zapechelnyuk (2019, Proposition 2)).

22Censorship in linear persuasion has been studied, among others, by Kamenica and Gentzkow (2011),
Kolotilin (2015), Gentzkow and Kamenica (2016), Kolotilin et al. (2017), Kolotilin (2018), Dworczak and
Martini (2019), Kleiner, Moldovanu, and Strack (2021), Kolotilin, Mylovanov, and Zapechelnyuk (2022), and
Arieli, Babichenko, Smorodinsky, and Yamashita (2023).

23See also Amador, Bagwell, and Frankel (2018). Alonso and Matouschek (2008) studied the case with
quadratic utilities (F (y) = y). More specialized cases have been studied, among others, in Holmström (1977,
1984), Melumad and Shibano (1991), and Martimort and Semenov (2006).

24Goltsman, Hörner, Pavlov and Squintani (2009), Kováč and Mylovanov (2009), and Kleiner, Moldovanu,
and Strack (2021) also allowed for stochastic mechanisms but restricted attention to quadratic utilities (F (y) =
y).
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(2024). As we consider the general case of linear delegation, our conditions for the op-
timality of threshold delegation (Corollary 1) subsume the corresponding conditions in
these papers.

6. NONLINEAR DETERMINISTIC CASE

In this section, we consider another popular subclass of the persuasion, delegation,
and discriminatory disclosure problems, referred to as deterministic problems. For K ∈
{P�D�I}, a monotone mechanism πK ∈ �M is deterministic if it takes values 0 or 1, and a
problem K is deterministic if the principal is constrained to deterministic mechanisms.

As in Remark 1, we use variables y ∈ Y = [y� y] and x ∈ X = [x�x] that have strictly
positive densities f and g, and assume that (6) holds. In discriminatory disclosure, the
agent’s and principal’s utilities from action a = 1 are given by u(y�x) and v(y�x). In the
other two problems, the utilities are determined by (6). In persuasion, the agent’s and
principal’s utilities are given by

UP (y�x) =
∫ x

x

u(y� x̃)g(x̃) dx̃ and VP (y�x) =
∫ x

x

v(y� x̃)g(x̃) dx̃� (47)

In delegation, the agent’s and principal’s utilities are given by

UD(y�x) =
∫ y

y

u(ỹ� x)f (ỹ) dỹ and VD(y�x) =
∫ y

y

v(ỹ� x)f (ỹ) dỹ� (48)

We impose strict single-crossing assumptions: u is strictly upcrossing in y if, for each
x ∈ X ,

u(y1�x) ≥ 0 =⇒ u(y2�x) > 0 whenever y2 > y1�

and u is strictly aggregate downcrossing in x if, for each probability distribution λ ∈ �(Y ),∫
Y

u(y�x1)λ(dy) ≤ 0 =⇒
∫
Y

u(y�x2)λ(dy) < 0 whenever x2 > x1�

Under strict single-crossing, an incentive-compatible deterministic mechanism can be
described by a subset B of S, representing a monotone partition in persuasion, a del-
egation set in delegation, and a menu of cutoff tests in discriminatory disclosure.25 We
next show that the set of all incentive-compatible deterministic mechanisms in the three
problems is identified with

B ={B ⊂ Y : B is closed and {y� y}⊂ B}�

In persuasion, an incentive-compatible deterministic mechanism is described by a
monotone partition that divides the set of states Y into convex sets—singletons and in-
tervals. The agent observes which partition element contains the state and chooses an

25Our analysis can be extended from strict single-crossing to single-crossing. Strict single-crossing ensures
that the agent’s best-response correspondence is single valued almost everywhere in the three problems, and,
thus, for all B, the principal’s expected utility is also single valued. Without strict single-crossing, the agent’s
best response and, thus, the principal’s expected utility W (B) are generally set valued. In this case, by Au-
mann’s (1965) integration of correspondences, Corollary 2 in Section 6.1 would equate the sets of the princi-
pal’s expected utilities in the three problems for all B, as shown in Kolotilin and Zapechelnyuk (2019, Theorem
1′).
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optimal decision. A monotone partition is represented by a set B ∈ B of boundary points
of all partition elements. Specifically, let

zB(y) = inf{ỹ ∈ B : ỹ ≥ y} and zB(y) = sup{ỹ ∈ B : ỹ < y}�

with the convention zB(y) = y . The partition element of B that contains state y ∈ Y

is the singleton {y} (so the state is revealed) when zB(y) = zB(y), and it is the in-
terval (zB(y)� zB(y)] (so the state is pooled with other states in that interval) when
zB(y) < zB(y). For example, if Y = [0�1] and B = [0�1/2] ∪{1}, then all states in [0�1/2]
are revealed, and all states in (1/2�1] are pooled.

In delegation, an incentive-compatible deterministic mechanism is described by a dele-
gation set B ⊂ Y . The agent privately observes his type and chooses an optimal decision
from the delegation set. As the agent can always choose extreme decisions y = y and
y = y , these decisions are included in B, so B ∈ B.

In discriminatory disclosure, an incentive-compatible deterministic mechanism is de-
scribed by a menu B ⊂ Y of cutoff tests. The agent privately observes his type x, chooses
his preferred cutoff test b from the menu B, observes whether the state y is below or
above b, and chooses an optimal action a ∈{0�1}. As the agent can always ignore the test,
the uninformative tests b = y and b= y are included in B, so B ∈ B.

6.1. Equivalence

This section shows that in the case of deterministic mechanisms, our equivalence result
takes a simple form: for each set B ∈ B, the principal’s expected utility is the same in
the three equivalent problems. To state this result, we define the agent’s best-response
function and the principal’s expected utility in the three problems for each set B ∈ B. In
persuasion with monotone partition B, when the state is y , the agent optimally chooses
decision given by

x∗
B(y) ∈ arg max

x∈X

⎧⎪⎨
⎪⎩
UP (y�x) if zB(y) = zB(y)�∫ zB (y)

zB (y)
UP (ỹ� x)f (ỹ) dỹ if zB(y) < zB(y),

(49)

so the principal’s expected utility is

WP (B) =
∫
Y

VP

(
y�x∗

B(y)
)
f (y) dy� for all B ∈ B.

In delegation with delegation set B, the agent with type x optimally chooses decision

y∗
B(x) ∈ arg max

y∈B
UD(y�x)� (50)

so the principal’s expected utility is

WD(B) =
∫
X

VD

(
y∗
B(x)�x

)
g(x) dx� for all B ∈ B.
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In discriminatory disclosure with menu of cutoff tests B, when the state is y , the agent
with type x optimally chooses action

a∗
B(y�x) =

{
a∗

0(x) if y ≤ b∗(x)�
a∗

1(x) if y > b∗(x)�
(51)

where

(a∗
0(x)� a∗

1(x)� b∗(x)) ∈ arg max
(a0�a1�b)∈{0�1}2×B

a0

∫ b

y

u(y�x)f (y) dy + a1

∫ y

b

u(y�x)f (y) dy�

so the principal’s expected utility is

WI (B) =
∫
X×Y

v(y�x)a∗
B(y�x)f (y)g(x) dy dx� for all B ∈ B.

In the deterministic case, Theorem 1 with Remark 1 simplifies as follows.

COROLLARY 2: A deterministic persuasion problem (uP� vP� f ), a deterministic delegation
problem (uD�vD�g), and a deterministic discriminatory disclosure problem (uI� vI� f� g) sat-
isfy WP (B) = WD(B) = WI (B) for all B ∈ B and all y∗

B, x∗
B and a∗

B given by (49)–(51) if uP ,
uD, and uI are strictly upcrossing in y and strictly aggregate downcrossing in x, and satisfy (6).

6.2. Optimization

Using the tools from the literature on nonlinear persuasion, this section derives two
results on optimal deterministic delegation.26 First, for general utility functions, Proposi-
tion 3 provides a sufficient condition for the optimality of full discretion, which permits all
decisions. Second, for a special class of nonlinear utility functions, Proposition 4 provides
necessary and sufficient conditions for the optimality of any candidate delegation set.

Our analysis applies to our delegation problem, as well as to standard delegation and
delegation with outside option, after applying compactification analogously to Section 5.2
(see Kolotilin and Zapechelnyuk (2024, Appendix A)). We henceforth restrict attention
to our delegation problem.

For each decision y ∈ Y , define x∗(y) = arg maxx∈X
∫ x

x
u(y� x̃)g(x̃) dx̃. In the interior

case, x∗(y) is the type x whose preferred decision is y , so that u(y�x∗(y)) = 0.

PROPOSITION 3: Let g, v, and ux = ∂u/∂x be continuous functions. Delegation set B = Y
maximizes W on B if∫ x∗(y2)

x

v(y2� x̃)g(x̃) dx̃

u(y2�x)
≥

∫ x

x∗(y1)
v(y1� x̃)g(x̃) dx̃

−u(y1�x)
� (52)

for all y1� y2 ∈ Y and all x ∈ X such that u(y1�x) < 0 < u(y2�x).

26A promising avenue for future research is to establish new results in persuasion using tools from delega-
tion. In particular, the Lagrangian method developed by Amador and Bagwell (2013) is widely used to study
delegation problems with a nonlinear utility of the principal. Using our equivalence, this method can be applied
to nonlinear monotone persuasion problems, which are currently not well understood.



224 A. KOLOTILIN AND A. ZAPECHELNYUK

Proposition 3 adapts the results from the persuasion literature. Kolotilin (2018, Propo-
sition 1(ii)) and Kolotilin, Corrao, and Wolitzky (2024, Theorem 5) showed that full dis-
closure is optimal among all (and thus among all monotone) persuasion mechanisms
if, for all ρ ∈ (0�1) and all y1� y2 ∈ Y , the principal prefers to split posterior λ that
assigns probabilities ρ and 1 − ρ to states y1 and y2 into two degenerate posteriors
that assign probability 1 to y1 and y2.27 This condition can be expressed as (52), be-
cause in persuasion the utilities are given by (47) and posterior λ induces decision x if
ρu(y1�x) + (1 − ρ)u(y2�x) = 0. Thus, if (52) holds, then full discretion is optimal among
all monotone (and thus among all deterministic) delegation mechanisms by Corollary 2.
28

We now show that condition (52) is weaker than common conditions for full discretion
in the delegation literature, and it applies to a broader class of utilities.

REMARK 3: Let X ⊂ Y , u(y�x) = y − x, and vy = ∂v/∂y be a continuous function.29

Then (52) holds if(
min

y�x∈Y×X
vy (y�x)

)
G(x) + v(x�x)g(x) is increasing in x on X,

v(x�x)g(x) ≥ 0 if x > y and v(x�x)g(x) ≤ 0 if x < y�

(53)

Amador and Bagwell (2013, Proposition 1) and Kartik, Kleiner, and Van Weelden
(2021, Proposition 1) showed that, in standard delegation and delegation with outside
option, full discretion is optimal if (53) holds.30 Their Lagrangian method uses the enve-
lope characterization of incentive compatibility, which relies on u(y�x) = y − x, and the
concavity of the Lagrangian, which relies on (53). Our approach is valid for a general u
and does not rely on the concavity of the Lagrangian.

Consider now a popular subclass of nonlinear problems referred to as linear∗ problems.
For comparability with the linear case of Section 5, we use variables s and t that are
uniformly distributed on S = T = [0�1], and replace y = s and x = t in the notation.

For K ∈{P�D�I}, a problem (uK�vK) is linear∗ if

uK(s� t) = c(s) − b(t) and vK(s� t) = e
(
c(s)

) −βb(t)� (L∗)

where β ∈ R, b and c are continuous and strictly increasing, and e is continuous.
In contrast to (L), where u and v are linear in c(s), here u and v are linear in b(t).

W.l.o.g., we normalize c(0) = 0 and c(1) = 1.
We now characterize optimal delegation sets in linear∗ delegation when b(t) = t. Define

η(s) =
∫ s

0

(
e
(
c(s̃)

) − βc(s̃)
2

)
ds̃�

27Kolotilin (2018) and Kolotilin, Corrao, and Wolitzky (2024) assumed that x∗(y) is interior for all y , but
the result easily extends to the general case with possible boundary solutions, as follows from the proof of
Proposition 3.

28This result does not depend on f which determines the utilities in (48).
29In standard delegation and in delegation with outside option, X ⊂ Y follows from Kolotilin and Zapechel-

nyuk (2024, Appendix A).
30See also Amador and Bagwell (2022) for related results in delegation with outside option.
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and let convη be the largest convex function on S such that convη ≤ η. Next, for each
delegation set B ∈ B, define

ηB(s) =
⎧⎨
⎩
η(s) if zB(s) = zB(s)�

zB(s) − s

zB(s) − zB(s)
η

(
zB(s)

) + s − zB(s)
zB(s) − zB(s)

η
(
zB(s)

)
if zB(s) < zB(s).

PROPOSITION 4: Suppose that (L∗) holds with b(t) = t. Delegation set B maximizes W on
B if and only if ηB = convη.

To prove Proposition 4, we apply Corollary 2 to recast this delegation problem as a
persuasion problem, and then solve it using the standard ironing technique of Myerson
(1981). A similar characterization of optimal monotone partitions in linear∗ persuasion,
albeit in a slightly less general case, appears in Rayo (2013, Theorem 1) and Onuchic and
Ray (2023, Theorem 1). Proposition 4 also complements the characterization of optimal
delegation sets in Kartik, Kleiner, and Van Weelden (2021). They considered linear∗ del-
egation with outside option in the special case where c(s) = s, and the principal’s utility
is type-independent (β = 0) and concave in y (e(y) is increasing), but, unlike in Proposi-
tion 4, they allowed nonlinear b(t).

7. APPLICATION TO MONOPOLY REGULATION

This section illustrates how the results in Sections 5.3 and 6.2 can be used to character-
ize the optimality of a quantity floor (which is equivalent to a price cap) in the classical
problem of monopoly regulation.

There are a unit mass of consumers with unit demand, a monopolist (agent), and a regu-
lator (principal). The monopolist chooses a quantity s ∈ S = [0�1] at cost (1 − x)s, where
x ∈ [0�1] is the monopolist’s private type that has a distribution G with a continuously
differentiable and strictly positive density g. The monopolist’s profit is given by

U (s�x) = p(s)s − (1 − x)s� (54)

where p(s) is the inverse demand. Assume that p(s) is twice continuously differentiable
and strictly decreasing on S, and the monopolist’s marginal revenue p(s) +p′(s)s is non-
negative and strictly decreasing on S. For convenience, let p(0) = 1 and p(1) +p′(1) = 0,
so that p(s) +p′(s)s ∈ [0�1].31

The regulator chooses a delegation set to maximize the weighted sum of the consumer
and producer surpluses:

V (s�x) =
∫ s

0

(
p(s̃) −p(s)

)
ds̃ +βU (s�x)� (55)

where β ∈ [0�1] is a parameter. Quantities s = 0 and s = 1 are always included in the
delegation set, because s = 0 is the monopolist’s outside option, whereas s = 1 is either
strictly worse than s = 0 for the monopolist or it is the first-best choice for the principal,
as Claim 5 shows.

31The substantive assumption here is that the marginal revenue is nonnegative. The interval of relevant
types is equal to the interval of values of the marginal revenue. The types outside this interval are irrelevant as
they make trivial choices. We normalize this interval to be [0�1].
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CLAIM 5: For each x ∈ [0�1], either U (1�x) <U (0�x) or V (s�x) is increasing in s.

Let c(s) = 1 −p(s) −p′(s)s and e(c(s)) = p′(s)s +βc(s).32 We have

u(s�x) = −∂U (s�x)
∂s

= c(s) − x and v(s�x) = −∂V (s�x)
∂s

= e
(
c(s)

) −βx�

This problem is linear∗ (i.e., (L∗) holds). This problem is also linear (i.e., (L) holds) if the
elasticity of the slope of the inverse demand, p′′(s)s/p′(s), is constant. Then the inverse
demand takes the form of p(s) = 1 − sk/(k + 1) for k > 0, in which case, letting y = sk,
we obtain

u(y�x) = y − x and v(y�x) =
(
β− k

k+ 1

)
y −βx�

We now show that optimal delegation takes the form of a quantity floor (i.e., any quan-
tity above a certain threshold is permitted) if (1) the elasticity of the slope of the inverse
demand is constant, the density of types is log-concave, and the weight on the producer
surplus is not too large33 or (2) this elasticity is decreasing and the density of types is
uniform.34

COROLLARY 3: There exists s∗ ∈ [0�1] such that delegation set {0} ∪ [s∗�1] is optimal if
one of the following two conditions holds:

(1) p′′(s)s/p′(s) = k− 1 for some k > 0, g′(x)/g(x) is decreasing, and β ≤ 2k/(k+ 1);
(2) p′′(s)s/p′(s) is decreasing and g(x) = 1.
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