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APPENDIX A: COMPACTIFICATION IN DETERMINISTIC DELEGATION

Analogously to Section 5.2, this section shows that, under Inada-type assumptions, standard
deterministic delegation and deterministic delegation with outside option can be represented as
our deterministic delegation problem.

In standard delegation, the set of decisions is Y0 = (y
0
, y0). In delegation with outside option,

the set of decisions is Y0 = [y, y0), and the agent can always choose the outside option y.
Say that a delegation set B ⊂ Y0 is undominated by V0 :X→R if

V (y∗B(x), x)≥ V0(x), for some x ∈X .

Propositions 1′ and 2′ are the deterministic counterparts of Propositions 1 and 2.

PROPOSITION 1′: Suppose that Y0 = (y
0
, y0)⊆R, and

max
x∈X

U(y,x)→−∞ and max
x∈X

V (y,x)→−∞ as y→ y
0

and y→ y0. (56)

For each continuous V0, there exist y, y ∈ Y0 (with u(y,x)< 0< u(y,x)) such that the follow-
ing holds. For each delegation set B that is undominated by V0, there exists another delegation
set B̃ ⊂ Y = [y, y] with {y, y} ⊂ B̃ such that y∗

B̃
(x) = y∗B(x) for almost all x ∈X .

PROOF: Define

Z =

{
y ∈ Y0 : max

x∈X
V (y,x)≥min

x∈X
V0(x)

}
.

If Z is empty, then every B ⊂ Y0 is dominated by V0, and the proposition holds trivially.
Assume henceforth that Z is nonempty. Let z = inf Z and z = supZ . By (56), compactness of
X , and continuity of V and V0, we have y

0
< z ≤ z < y0.

Next, let ε > 0 and define

Ỹ =

{
y ∈ Y0 : max

x∈X
U(y,x)≥ min

x∈X,z∈[z,z]
U(z,x)− ε

}
.

As [z, z]⊂ Ỹ , Ỹ is nonempty. Let y = inf Ỹ and y = sup Ỹ . By (56), compactness of X and
[z, z], and continuity of U , we have z > y > y

0
and z < y < y0. Let Y = [y, y]. Thus, each

type of the agent strictly prefers every decision in [z, z] to every decision outside of Y . For
each B ⊂ Y0 undominated by V0, let B̃ = (B ∩ Y )∪ {y, y}. Then, by (50) and strict aggregate
downcrossing of u in x, we have y∗

B̃
(x) = y∗B(x) for almost all x ∈X . Q.E.D.
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PROPOSITION 2′: Suppose that Y0 = [y, y0)⊂R and

max
x∈X

U(y,x)→−∞ as y→ y0. (57)

Then there exists y ∈ Y0 (with u(y,x)< 0) such that the following holds. For each delegation
set B with y ∈B, there exists another delegation set B̃ ⊂ Y = [y, y] with {y, y} ⊂ B̃ such that
y∗
B̃

(x) = y∗B(x) for almost all x ∈X .

PROOF: Let ε > 0 and define

y = inf

{
y ∈ Y0 : max

x∈X
U(y,x)≥min

x∈X
U(y,x)− ε

}
.

By (57), compactness ofX and continuity of U , we have y < y < y0. Let Y = [y, y]. Thus, each
type of the agent strictly prefers decision y to every decision outside of Y . For each B ⊂ Y0

with y ∈ B, let B̃ = (B ∩ Y ) ∪ {y}. Then, by (50) and strict aggregate downcrossing of u in
x, we have y∗

B̃
(x) = y∗B(x) for almost all x ∈X . Q.E.D.

APPENDIX B: PROOFS

B.1. Proof of Lemma 4

Consider a sequence of intervals (xn, xn)⊂ Y with n ∈N. For each n ∈N, let

Qn(xn+1|xn) =

{
δxn , if xn /∈ (xn, xn),
xn−xn
xn−xn

δxn +
xn−xn
xn−xn

δxn , if xn ∈ (xn, xn),

where δx, with x ∈ Y , denotes the degenerate distribution at x. Let H1 = H , and for each
n ∈ N, let Hn+1(xn+1) =

∫
Qn(xn+1|xn)Hn(dxn). This construction gives a finitely sup-

ported conditional distribution Pn(xn+1|x) such that
∫
Pn(xn+1|x)H(dx) =Hn+1(xn+1) for

all xn+1 ∈ Y , and
∫
xn+1Pn(dxn+1|x) = x for all x ∈ Y . In the proof of their Theorem 4.1,

Müller and Rüschendorf (2001) show that a sequence of intervals (xn, xn) can be chosen in
such a way that Pn(·|x) converges weakly to P (·|x) such that

∫
P (y|x)H(dx) = F (y) for all

y ∈ Y , and
∫
yP (dy|x) = x for all x ∈ Y .

Since the likelihood ratio is closed with respect to weak convergence (e.g., Müller and
Stoyan, 2002, Theorem 1.4.9), it remains to show that Pn(xn+1|x) increases in x with respect
to the likelihood ratio order. Since Pn(xn+1|x) has a finite support, by induction, it suffices to
show that, for all intervals (z, z)⊂ Y , all finite sets Z ⊂ Y , and all discrete probability densities
h1(·) and h2(·) supported on Z that are ordered with respect to the likelihood ratio order,

h1(y1)h2(y2)≥ h2(y1)h1(y2), for all y2 > y1, (58)

we have that discrete probability densities h̃l(·), with l = 1,2, supported on Z̃ = Z ∪ {z, z} \
(z, z) and defined by

h̃l(y) =


∑

z̃∈Z∩[z,z] hl(z̃)
z−z̃
z−z , if y = z,

hl(y), if y /∈ [z, z],∑
z̃∈Z∩[z,z] hl(z̃)

z̃−z
z−z , if y = z,

(59)
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are also ordered with respect to the likelihood ratio order,

h̃1(y1)h̃2(y2)≥ h̃2(y1)h̃1(y2), for all y2 > y1,

This follows from direct calculations for all possible cases with y2 > y1. The only non-trivial
case is where y1 = z and y2 = z. In this case, we have

h̃1(z)h̃2(z)− h̃2(z)h̃1(z) =

 ∑
z̃∈Z∩[z,z]

h1(z̃)
z − z̃
z − z

 ∑
z̃∈Z∩[z,z]

h2(z̃)
z̃ − z
z − z


−

 ∑
z̃∈Z∩[z,z]

h2(z̃)
z − z̃
z − z

 ∑
z̃∈Z∩[z,z]

h1(z̃)
z̃ − z
z − z


=

∑
y1,y2∈Z∩[z,z]: y1<y2

(h1(y1)h2(y2)− h2(y1)h1(y2))
y2 − y1
z − z ≥ 0,

where the first equality is by (59), the second equality is by rearrangement, and the inequality
is by (58). Q.E.D.

B.2. Proofs of Claims 1–4

PROOF OF CLAIM 1: It suffices to show thatHπ̂(x) =H(x) and Uπ̂(x) =
∫ y
x

(1−H(x̃))dx̃
for all x ∈ Y . Indeed, for all x ∈ Y , we have

Hπ̂(x) =

∫
Y

(1− π̂(y,x))F (dy) =

∫
Y

P (x|y)F (dy) =H(x),

where the first equality is by definition, the second equality is by (28), and the third equality is
by (25) and Bayes’ rule. Moreover, for all x ∈ Y , we have

Uπ̂(x) =

∫
Y

(y− x)π̂(y,x)F (dy) =

∫
Y

(y− x)(1− P (x|y))F (dy)

=

∫
Y

(y− x)

(∫
(x,y]

P (dx̃|y)

)
F (dy) =

∫
(x,y]

∫
Y

(y− x)P (dy|x̃)H(dx̃)

=

∫
(x,y]

(x̃− x)H(dx̃) =

∫
(x,y]

(1−H(x̃))dx̃,

where the first equality is by the definition, the second equality is by (28), the third equality is
by the Leibniz rule, the fourth equality is by Bayes’ rule, the fifth equality is by (26), and the
sixth equality is by integration by parts. Q.E.D.

PROOF OF CLAIM 2: Let πI satisfy (ICI). Since πI is right-continuous in t, it follows that
π̃ given by π̃(y,x) = πI(F (y),G(x)) for all (y,x) ∈ Y × Y satisfies (IC) for all x, x̂ ∈ [x,x).
By the standard argument, (IC) with (x, x̂) ∈ {(x1, x2), (x2, x1)} and (â0, â1) = (0,1) yields

−(1−Hπ̃(x1))(x2 − x1)≤ Uπ̃(x2)−Uπ̃(x1)≤−(1−Hπ̃(x2))(x2 − x1),

for all x≤ x1 < x2 < x.
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Hence, Hπ̃ is increasing on [x,x), and, by the envelope theorem,

Uπ̃(x2)−Uπ̃(x1) =−
∫ x2

x1

(1−Hπ̃(x̃))dx̃, for all x≤ x1 < x2 < x. (60)

Since Hπ̃ and Uπ̃ are monotone on [x,x), the left limits Hπ̃(x−) = limx↑xHπ̃(x) and
Uπ̃(x−) = limx↑xUπ̃(x) exist. Moreover, there exists a left-continuous function φ : Y → [0,1]
such that Hπ̃(x−) =

∫
Y

(1− φ(y))F (dy) and Uπ̃(x−) =
∫
Y

(y− x)φ(y)F (dy).
Let

x∗ = min

{
x ∈ [y,x] : Uπ̃(x) + (1−Hπ̃(x))(x− x)≥

∫
Y

(y− x)F (dy)

}
,

x∗ = max{x ∈ [x, y] : Uπ̃(x−) + (1−Hπ̃(x−))(x− x)≥ 0} ,

which are well-defined because Uπ̃(x) ≥
∫
Y

(y − x)F (dy) by (IC) with (â0, â1) = (1,1) and
Uπ̃(x−)≥ 0 by (IC) with (â0, â1) = (0,0). Consider π given for each (y,x) ∈ Y × Y by

π(y,x) =



1, if x ∈ [y,x∗)

π̃(y,x), if x ∈ [x∗, x),

π̃(y,x), if x ∈ [x,x),

φ(y), if x ∈ [x,x∗),

0, if x ∈ [x∗, y],

(61)

Since π(y,x) = π̃(y,x) for all (y,x) ∈ Y × [x,x), we have Hπ(x) = Hπ̃(x) and Uπ(x) =
Uπ̃(x) for all x ∈ [x,x). By (61) and the monotonicity of Hπ̃ on [x,x), Hπ is increasing on Y .

Next, we have:

Uπ(x) = 0 =

∫ y

x

(1−Hπ(x̃))dx̃, for all x ∈ [x∗, y], (62)

where the equalities are by the definition of π, Hπ , and Uπ;

Uπ(x) = (x∗ − x)(1−Hπ(x)) =

∫ y

x

(1−Hπ(x̃))dx̃, for all x ∈ [x,x∗), (63)

where the first equality is by the definition of π, Hπ , Uπ , and x∗, and the second is by (62);

Uπ(x) = Uπ(x) +

∫ x

x

(1−Hπ̃(x̃))dx̃=

∫ y

x

(1−Hπ̃(x̃))dx̃, for all x ∈ [x,x), (64)

where the first equality is by (60) and the definition of π(y,x), and the second is by (63);

Uπ(x) = Uπ(x) + (x− x)(1−H(x)) =

∫ y

x

(1−Hπ̃(x̃))dx̃, for all x ∈ [x∗, x), (65)

where the first equality is by the definition of π, Hπ , and Uπ , and the second is by (64);

Uπ(x) = Uπ(x∗) + (x∗ − x)(1−H(y)) =

∫ y

x

(1−Hπ̃(x̃))dx̃, for all x ∈ [y,x∗), (66)
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where the first equality is by the definition of π, Hπ , Uπ , and x∗, and the second is by (65);

Uπ(y) =

∫
Y

(y− y)F (dy) =

∫
Y

(1− F (y))dy, (67)

where the first equality is by the definition of π and Uπ , and the second is by integration by
parts. Since π satisfies (24), it satisfies (IC) by Lemma 3. Q.E.D.

PROOF OF CLAIM 3: Let j = 0,1 and let π ∈Πj . The principal’s interim utility is

Vπ(x) = α

∫ y

x

(1−Hπ(x̃))dx̃+ (αx− d(x))(1−Hπ(x))

=−αx
∫
(x,y]

Hπ(dx̃) + α

∫
(x,y]

x̃Hπ(dx̃) + (αx− d(x))

∫
(x,y]

Hπ(dx̃) (68)

=

∫
(x,y]

(αx̃− d(x))Hπ(dx̃), for all x ∈X,

where the first equality is by (22), Lemmas 1 and 3, and Claim 2, the second equality is by
integration by parts, and the last equality is by rearrangement. So, the principal’s expected
utility is

W (π) =

∫
X

(∫
(x,y]

(αx̃− d(x))Hπ(dx̃)

)
g(x)dx

=

∫
X

(∫ x̃

x

(αx̃− d(x))g(x)dx

)
Hπ(dx̃) +

∫
(x,y]

(∫
X

(αx̃− d(x))g(x)dx

)
Hπ(dx̃)

=

∫
Y

ν(x̃)Hπ(dx̃),

where the first equality is by (68) and the definition of W (π), the second equality is by Fubini’s
theorem, and the third equality is by the definition of ν. Q.E.D.

PROOF OF CLAIM 4: Let j = 0,1 and let π ∈Πj .
If. Suppose that Hπ maximizes

∫
Y
ν(x)H(dx) over distributions H that satisfy (MPS). We

show that the principal’s expected utility is higher under π than under any π̃ ∈Πj . As π̃ ∈Πj ,
it satisfies (IC0)–(IC2). Observe that Hπ and Hπ̃ satisfy (MPS) by Lemmas 1 and 3, Claim 2,
and condition (23). The claim follows from

W (π̃) =

∫
Y

ν(x)Hπ̃(dx)≤
∫
Y

ν(x)Hπ(dx) =W (π),

where the equalities hold by Claim 3, and the inequality holds by the optimality of Hπ . Hence
π is optimal on Πj .

Only if. Suppose that π is optimal on Πj . Consider any distribution H on Y that satisfies
(MPS). By Lemma 1 and Claim 1, there exists a (monotone) delegation mechanism π̂ on Y ×Y
with Hπ̂ =H that satisfies (IC0)–(IC2) for all x, x̂ ∈ Y . We have∫

Y

ν(x)Hπ(dx) =W (π)≥W (π̂) =

∫
Y

ν(x)Hπ̂(dx) =

∫
Y

ν(x)H(dx),
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where the first and second equalities are by Claim 3, the inequality is by the optimality of π,
and the third equality is by Hπ̂ =H . Thus, Hπ maximizes

∫
Y
ν(x)H(dx) over distributions H

that satisfy (MPS). Q.E.D.

B.3. Proofs of Propositions 1 and 2

To simplify notation, we prove Propositions 1 and 2 using the original decision variable s
with S = R in standard delegation and S = [s,∞) in delegation with outside option. When
we refer to constraints (IC0)–(IC2) and conditions (33)–(34), it is understood that they are
expressed in variable s rather than y.

We first introduce some notations and prove a lemma. Let k : X → R and ` : X → R be
continuous functions. Define

Z =

{
s ∈ S : max

x∈X

(
k(x)s− `(x)−C(s)

)
≥ 0

}
,

z = inf Z, z = supZ.

(69)

Note that z and z can be infinite if Z is unbounded or empty. Also, define

Λ =

{
λ ∈∆(S) : max

x∈X
Eλ
[
k(x)s− `(x)−C(s)

]
≥ 0

}
. (70)

CLAIM 6: If z and z are finite, and

max
x∈X

(
k(x)z − `(x)−C(z)

)
= 0 and max

x∈X

(
k(x)z − `(x)−C(z)

)
= 0, (71)

then, for each λ ∈ Λ, there exists λ̂ ∈ Λ such that supp(λ̂) ⊂ [z, z], Eλ̂[s] = Eλ[s], and
Eλ̂[C(s)] = Eλ[C(s)].

PROOF: Let L(s) = maxx∈X
(
k(x)s− `(x)

)
. For all s ∈ S and all λ ∈∆(S), we have

max
x∈X

(
k(x)s− `(x)−C(s)

)
= L(s)−C(s),

max
x∈X

Eλ
[
k(x)s− `(x)−C(s)

]
= L(Eλ[s])−Eλ[C(s)].

(72)

Fix λ ∈Λ. We have

0≤ L(Eλ[s])]−Eλ[C(s)]≤ L(Eλ[s])]−C(Eλ[s]),

where the first inequality is by (72) and λ ∈ Λ, and the second inequality is by the convexity
of C . Then, by (72) and the definition of z and z, Eλ[s] ∈ [z, z]. Moreover, if Eλ[s] = z or
Eλ[s] = z, then λ= δz , so λ̂= λ is as required. Assume henceforth that z < Eλ[s]< z. Let

θ =
Eλ[s]− z
z − z and τ =

(1− θ)C(z) + θC(z)−Eλ[C(s)]

(1− θ)C(z) + θC(z)−C(Eλ[s])
.

We claim that τ ∈ [0,1]. Indeed, the numerator is smaller than the denominator because C is
convex. Moreover, the denominator is strictly positive because z < Eλ[s]< z and C is strictly
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convex. Finally, the numerator is positive, because

(1− θ)C(z) + θC(z)−Eλ[C(s)] = (1− θ)L(z) + θL(z)−Eλ[C(s)]

≥ (1− θ)L(z) + θL(z)−L(Eλ[s])≥ 0,

where the equality is by (71), the first inequality is by the definition of Λ, and the second
inequality is by the convexity of L(s) and the definition of θ, which implies that (1−θ)z+θz =
Eλ[s].

Let λ̂ ∈Λ be given by

λ̂= τδEλ[s] + (1− τ)(1− θ)δz + (1− τ)θδz.

By construction, supp(λ̂) ⊂ [z, z]. Moreover, by the definition of θ and τ , we have Eλ̂[s] =
Eλ[s] and Eλ̂[C(s)] = Eλ[C(s)]. Q.E.D.

PROOF OF PROPOSITION 1: Let k(x) = d(x)/α and `(x) = V0(x)/α. By (29), we have

V (s,x)− V0(x) = α
(
k(x)s− `(x)−C(s)

)
.

Observe that Z ⊂ R and Λ ⊂∆(R), given by (69) and (70), are the sets of deterministic and
stochastic decisions that are undominated by V0.

We now show that z and z, given by (69), are finite. IfZ is empty, that is, V (s,x)−V0(x)< 0
for all s ∈ R and all x ∈ X , then there is no mechanism that is undominated by V0, and the
proposition holds trivially. Assume henceforth that Z is nonempty, and thus z ≤ z. By (33) and
continuity of d and V0, we have z >−∞ and z <∞.

Next, define

s∗ = inf

{
s ∈R : max

x∈X,z∈[z,z]
(U(s,x)−U(z,x))≥ 0

}
,

s∗ = sup

{
s ∈R : max

x∈X,z∈[z,z]
(U(s,x)−U(z,x))≥ 0

}
.

By (33) and compactness of [z, z], we have z ≥ s∗ >−∞ and z ≤ s∗ <∞. Let S∗ = [s∗, s∗].
By the definition of S∗, each type of the agent strictly prefers every decision in [z, z] — and,
thus, every lottery over [z, z] — to every decision s 6∈ S∗.

Let π be a mechanism that satisfies (IC0) and is undominated by V0. Because z and z are
finite and S = R, condition (71) of Claim 6 is satisfied. Thus, by Claim 6, there exists a mech-
anism π̃ such that supp(π̃)⊂ [z, z]⊂ S∗, and

Eπ̃(·|x)[s] = Eπ(·|x)[s] and Eπ̃(·|x)[C(s)] = Eπ(·|x)[C(s)], for all x ∈X.

By (29), equalities (31) hold for all x ∈X . Finally, let ε1, ε2 > 0 be such that c(s∗ − ε1)< x
and c(s∗+ ε2)> x, and let Y = [y, y] = [c(s∗− ε1), c(s∗+ ε2)]. By the definition of s∗ and s∗

and (33), π̃ satisfies (IC1) and (IC2) with strict inequalities. Q.E.D.

PROOF OF PROPOSITION 2: Let k(x) = x and `(x) = xs−C(s). Thus, by (29), we have

U(s,x)−U(s,x) = k(x)s− `(x)−C(s). (73)
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Observe that Z ⊂ [s,∞] and Λ⊂∆([s,∞)), given by (69) and (70), are the sets of determin-
istic and stochastic decisions that are preferred to the outside option s by at least one type of
the agent.

Let π be a mechanism that satisfies (IC0)–(IC1). Observe that z = s, and, by (34), we have
z <∞. Then, by S = [s,∞), (69), and (73), the condition (71) of Claim 6 is satisfied. Thus,
by Claim 6, there exists a mechanism π̃ such that supp(π̃)⊂ [z, z], and

Eπ̃(·|x)[s] = Eπ(·|x)[s] and Eπ̃(·|x)[C(s)] = EπD(·|x)[C(s)], for all x ∈X.

By (29), equalities (31) holds for all x ∈X . Finally, let ε > 0 be such that c(z + ε) > x, and
let Y = [y, y] = [c(z), c(z + ε)]. By the definition of z and (34), π̃ satisfies (IC2) with strict
inequality. Q.E.D.

B.4. Proof of Theorem 3

Let j = 0,1 and let π ∈Πj . We first prove three simple claims.

CLAIM 7: Let ν′ ∈ ν′. If p satisfies (40), then it is continuous and convex.

PROOF: Let p be given by (40). Then |ν′(x)| ≤ L for all x ∈ Y with L ∈R given by

L= sup
x∈Y
|(αx− d(x))g(x) + αG(x)|,

where L ∈R, because d is continuous, g is càdlàg, and Y is compact. Hence, by (40), for each
y ∈ Y , there exists a converging sequence xn in supp(Hπ), with converging ν′(xn), such that

p(z)≥ lim
n→∞

(ν(xn) + ν′(xn)(z − xn)), for all z ∈ Y , with equality at z = y. (74)

Then, p is continuous, because, by (74), for all z ∈ Y ,

p(y)− p(z)≤ lim
n→∞

(ν(xn) + ν′(xn)(y− xn)− ν(xn)− ν′(xn)(z − xn))

= lim
n→∞

ν′(xn)(y− z)≤ L|y− z|.

Also, p is convex, since, by (74), for all z, z′ ∈ Y and all ρ ∈ [0,1] with ρz + (1− ρ)z′ = y,

p(y)− ρp(z)− (1− ρ)p(z′)≤ lim
n→∞

ν′(xn)(y− ρz − (1− ρ)z′) = 0. Q.E.D.

CLAIM 8: If p is convex and satisfies (41) and (42), then, for all distributions H on Y that
satisfy (MPS), we have∫

Y

ν(x)H(dx)≤
∫
Y

p(x)H(dx)≤
∫
Y

p(y)F (dy) =

∫
Y

ν(x)Hπ(dx). (75)

PROOF: Let p be convex and satisfy (41) and (42), and let H be a distribution that satisfies
(MPS). The first inequality holds by (41), the second inequality holds because p is convex and
H satisfies (MPS), and the equality holds by (42). Q.E.D.

CLAIM 9: If p is continuous and convex, and satisfies (41) and (42), then there exists a
selection ν′ from ν′ such that pπ given by (40) satisfies p(y)≥ pπ(y) for all y ∈ Y .
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PROOF: Let p be continuous and convex, and satisfy (41) and (42). Observe that for H =
Hπ , all inequalities in (75) hold with equality. Hence, by the continuity of ν and p, we have

p(x) = ν(x), for all x ∈ supp(Hπ). (76)

Fix x ∈ supp(Hπ) such that x < y. For all y ∈ (x, y] and all ε ∈ (0,1], we have

p(y)− p(x)

y− x ≥ p(x+ ε(y− x))− p(x)

ε(y− x)
≥ ν(x+ ε(y− x))− ν(x)

ε(y− x)
,

where the first inequality is by the convexity of p and the second inequality is by (41) and (76).
Taking the limit ε ↓ 0 implies that

p(y)− p(x)

y− x ≥ ν′(x+), for all y ∈ (x, y].

Since p is convex, taking the limit y ↓ x implies that p′(x+) is well defined and satisfies
p′(x+) ≥ ν′(x+). By a symmetric argument, for all x ∈ supp(Hπ) such that x > y, we have
that p′(x−) is well defined and satisfies p′(x−)≤ ν′(x−).

If x= y ∈ supp(Hπ), then

p(y)≥ p(y) + p′(y
+

)(y− y)≥ ν(y) + ν′(y)(y− y), for all y ∈ Y ,

where the first inequality is by the convexity of p and the second inequality is by (41) and
p′(y

+
)≥ ν′(y

+
) = ν′(y). Similarly, if x= y ∈ supp(Hπ), then

p(y)≥ p(y) + p′(y−)(y− y)≥ ν(y) + ν′(y)(y− y), for all y ∈ Y .

Finally, consider x ∈ supp(Hπ) such that x ∈ (y, y). By the convexity of p, we have p′(x−)≤
p′(x+). In both cases ν′(x−) < ν′(x+) and ν′(x−) ≥ ν′(x+), the inequalities p′(x−) ≤
ν′(x−), p′(x+) ≥ ν′(x+), and p′(x−) ≤ p′(x+) imply that there exists ν′(x) ∈ ν ′(x) such
that p′(x−)≤ ν′(x)≤ p′(x+). Then, by the convexity of p and (41), we have

p(y)≥ p(x)− p′(x−)(x− y)≥ ν(x)− ν′(x)(x− y), for all y < x,

p(y)≥ p(x) + p′(x+)(y− x)≥ ν(x) + ν′(x)(y− x), for all y > x.

In sum, there exists a selection ν′ from ν ′ such that

p(y)≥ ν(x) + ν′(x)(y− x), for all x ∈ supp(Hπ) and all y ∈ Y .

Thus, pπ given by (40) satisfies p≥ pπ . Q.E.D.

We now prove Theorem 3.
If. Suppose that there exists a selection ν′ from ν′ such that p given by (40) satisfies (41) and

(42). Then π is optimal by Claims 4, 7, and 8.
Only if. Suppose that π is optimal. By Claim 4, Hπ maximizes

∫
Y
ν(x)H(dx) over distribu-

tions H that satisfy (MPS). Thus, since ν given by (36) is Lipschitz continuous, Theorem 2 in
Dworczak and Martini (2019) implies that there exists a continuous and convex function p on
Y that satisfies (41) and (42). Next, by Claim 9, there exists a selection ν′ from ν′ such that pπ
given by (40) satisfies p(y)≥ pπ(y) for all y ∈ Y . Then,∫

Y

p(y)F (dy) =

∫
Y

ν(x)Hπ(dx)≤
∫
Y

pπ(x)Hπ(dx)≤
∫
Y

pπ(y)F (dy)≤
∫
Y

p(y)F (dy),
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where the equality holds by (42), the first inequality holds because pπ(x) ≥ ν(x) for all x ∈
supp(Hπ) by (40), the second inequality holds because pπ is convex by Claim 7 and Hπ

satisfies (MPS), and the last inequality holds by p≥ pπ . So all inequalities hold with equality.
Thus, p= pπ , by the continuity of p and pπ . Q.E.D.

B.5. Proof of Remark 2

Let j = 0,1 and let π ∈ Πj be monotone. The marginal distributions of Jπ are F and Hπ ,
because

Jπ(y, y) =

∫ y

y

(1− π(ỹ|y))F (dỹ) =

∫ y

y

F (dỹ) = F (y), for all y ∈ Y ,

Jπ(y,x) =

∫ y

y

(1− π(y|x))F (dy) =Hπ(x), for all x ∈ Y ,
(77)

where the first equalities in both lines hold by (43), the second equality in the first line holds
by (IC1), and the second equality in the second line holds by (38).

Consider πP given by πP (x|y) = π(y|x) for all y ∈ Y and all x ∈ Y . By assumption, π(y|x)
is a monotone delegation mechanism, so it is increasing and left-continuous in y and decreasing
and right-continuous in x, and satisfies π(ỹ|y) = 0 by (IC1). Thus, πP is a monotone persuasion
mechanism. By the definition of persuasion mechanisms and (43),

Jπ(y,x) =

∫ y

y

(1− πP (x|ỹ))F (dỹ) = P(state< y,decision≤ x), for all (y,x) ∈ Y × Y .

By Lemmas 1 and 2 and Claim 2, for all x̂ ∈ Y and Hπ-almost all x ∈ Y , we have∫
Y

(∫ x

y

(y− x̃)dx̃

)
πP (dy|x)≥

∫
Y

(∫ x̂

y

(y− x̃)dx̃

)
πP (dy|x). (78)

Condition (78) implies the first-order condition∫
Y

(y− x)πP (dy|x) = 0, for Hπ-almost all x ∈ Y .

Then, for all functions φ : Y →R, we have∫
Y×Y

φ(x)(y− x)Jπ(dy,dx) =

∫
X

φ(x)

∫
Y

(y− x) (−πP (dy|x))Hπ(dx) = 0. (79)

Fix p ∈ Pπ . Then∫
Y

ν(x)Hπ(dx) =

∫
Y×Y

ν(x)Jπ(dy,dx) =

∫
Y×Y

(ν(x) + ν′(x)(y− x))Jπ(dy,dx)

≤
∫
Y×Y

p(y)Jπ(dy,dx) =

∫
Y

p(y)F (dy),

(80)

where the first and last equalities are by (77), the second equality is by (79), and the inequality
is by (40). Thus, (42) holds if and only if the inequality holds with equality, which is equivalent
to (45).
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Let j = 0,1, let π ∈Πj be deterministic, and let B ⊂ Y be a corresponding compact delega-
tion set. Then an extension of π from Y ×X to Y ×Y that satisfies (IC0)–(IC2) for all x, x̂ ∈ Y
is given by

π(y|x) = 1{x∗B(y)> x}, for all (y,x) ∈ Y × Y . (81)

Then, by (38), (43) and (81),

Hπ(x) =

∫
Y

1{x∗B(y)≤ x}F (dy) and Jπ(y,x) =

∫ y

y

1{x∗B(ỹ)≤ x}F (dỹ),

for all y ∈ Y and all x ∈ Y .

Since f(y)> 0 for all y ∈ Y and Hπ is a distribution of x∗B(y) where y has distribution F , we
have

x∗B(y) ∈ supp(Hπ), for all y ∈ Y . (82)

We thus obtain∫
Y

ν(x)Hπ(dx) =

∫
Y×Y

ν(x)Jπ(dy,dx) =

∫
Y×Y

(ν(x) + ν′(x)(y− x))Jπ(dy,dx)

=

∫
Y

(ν(x∗B(y)) + ν′(x∗B(y))(y− x∗B(y)))F (dy)≤
∫
Y

p(y)F (dy),

(83)

where the first equality is by (77), the second equality is by (79), the third equality is because
Jπ is a joint distribution of (y,x∗B(y)) where y has distribution F , and the inequality is by (40)
and (82). Thus, (42) holds if and only if inequality (83) holds with equality, which is equivalent
to (46) by (40) and the continuity of p on Y . Q.E.D.

B.6. Proof of Corollary 1

We first prove Corollary 1 for delegation with outside option, and then explain how the proof
changes in standard delegation.

Only if. Suppose that delegation set {y}∪ [y∗, y0) is optimal. As follows from Proposition 2,
there exists Y = [y, y]⊂ [y, y0), such that the agent’s best response for all x ∈X is the same
under delegation sets {y} ∪ [y∗, y0) and B = {y} ∪ [y∗, y]. By (44), we have

x∗B(y) =

{
y, if y ≥ y∗,
z∗, if y < y∗,

where z∗ =
1

F (y∗)− F (y)

∫ y∗

y

F (dy).

Hence, by (46), we have

p(y) =

{
ν(y), for all y ∈ (y∗, y],
ν(z∗) + ν′(z∗)(y− z∗), for all y ∈ [y, y∗].

(84)

We thus obtain (a) by (40) and Claim 7, and (b) by (41).
If. Suppose that conditions (a) and (b) hold. Then, p given by (84) satisfies (40), (41), and

(46), so delegation set {y} ∪ [y∗, y0) is optimal.
In standard delegation, for the only if part, we instead apply Proposition 1 with V0 given by

(32) and observe that z∗ ∈ (y,x), because the agent with any type x ∈X strictly prefers y∗ to
y. The rest of the proof is the same. Q.E.D.
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B.7. Proof of Corollary 2

Let B ∈ B be a monotone partition in persuasion. Since uP is strictly aggregate down-
crossing in x, x∗B(y) given by (49) is uniquely defined for all y ∈ Y . Redefine x∗B(y) = x,
which is w.l.o.g. because state y = y occurs with zero probability and is always revealed, as
zB(y) = zB(y) = y by definition. The corresponding persuasion mechanism is given by

πP (x|y) = 1{x∗B(y)> x}, for all y ∈ Y and all x ∈X .

Observe that (i) πP is left-continuous in y, because partition intervals (zB(y), zB(y)] are closed
on the right; (ii) πP is right-continuous in x because πP is defined using a strict inequality;
(iii) πP satisfies the normalization πP (x|y) = 0 for all x ∈X because x∗B(y) = x; (iv) πP is
monotone, because uP is upcrossing in y and thus x∗B(y) is increasing in y; (v) πP is incentive-
compatible, because the agent’s decision is optimal for each partition element, except possibly
for {y}. In sum, mechanism πP is monotone, deterministic, and incentive-compatible.

Consider deterministic mechanisms πD and πI given by πD(y|x) = πI(y,x) = πP (x|y) for
all y ∈ Y and all x ∈X . Note that

πI(y,x) = πD(y|x) = 1{y∗(x)< y}, for all y ∈ Y and all x ∈X,

where y∗(x) =

{
inf{y ∈ Y : x∗B(y)> x}, if x < x∗B(y),

y, if x≥ x∗B(y).

By Theorem 1, πD and πI are incentive-compatible and satisfy WP (πP ) = WD(πD) =
WI(πI). Since πD is incentive-compatible, we have, for almost all x ∈X ,

UD(y∗(x), x)≥max{sup
x̂∈X

UD(y∗(x̂), x),UD(y,x),UD(y,x)}= max
y∈B

UD(y,x),

and thus y∗(x) satisfies (50). Next, by strict aggregate downcrossing of uD in x, y∗B that satisfies
(50) is uniquely defined for almost all x, so y∗ = y∗B almost everywhere. Similarly, since πI is
incentive-compatible, we have, for almost all x ∈X ,∫ y

y∗(x)

uI(y,x)f(y)dy ≥ max
(a0,a1,b)∈{0,1}2×B

a0

∫ b

y

uI(y,x)f(y)dy+ a1

∫ y

b

uI(y,x)f(y)dy,

and thus a∗(y,x) = 1{y > y∗(x)} satisfies (51). Next, by strict aggregate downcrossing of uI
in x, for a∗B that satisfies (51), we have a∗ = a∗B almost everywhere. Q.E.D.

B.8. Proof of Proposition 3 and Remark 3

By Corollary 2, it suffices to show that if (52) holds, then full disclosure maximizes the
principal’s expected utility in the equivalent persuasion problem where the utilities are given
by (47). Under full disclosure, each state y ∈ Y is revealed, so the principal chooses decision
x∗(y). As decisions x /∈ [x∗(y), x∗(y)] can never be chosen, w.l.o.g., assume that X = [x,x] =
[x∗(y), x∗(y)]. For each x ∈X , let y∗(x) ∈ Y be such that u(y∗(x), x) = 0.

CLAIM 10: Define a function q :X→R by

q(x) =

{
0, if x= x and u(y,x)< 0 or x= x and u(y,x)> 0,

−v(y∗(x),x)g(x)
ux(y∗(x),x)

, otherwise.
(85)
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Condition (52) holds iff

E(y,x) = VP (y,x∗(y))− VP (y,x)− q(x)u(y,x)≥ 0, for all y ∈ Y and all x ∈X. (86)

PROOF: Suppose that (86) holds. By rearrangement, for all y1, y2 ∈ Y and all x ∈X such
that u(y1, x)< 0< u(y2, x), we have

VP (y2, x
∗(y2))− VP (y2, x)

u(y2, x)
≥ q(x)≥ VP (y1, x)− VP (y1, x

∗(y1))

−u(y1, x)
, (87)

yielding (52) by (47). Conversely, suppose that (52) holds. There are four cases to consider
depending on whether u(y,x) and u(y,x) are equal to 0. By symmetry, it suffices to consider
the case u(y,x)< 0 = u(y,x). Fix any x ∈ [x,x). By (47) and (52), we have

inf
y2>y∗(x)

VP (y2, x
∗(y2))− VP (y2, x)

u(y2, x)
≥ sup
y1<y∗(x)

VP (y1, x)− VP (y1, x
∗(y1))

−u(y1, x)
. (88)

Hence there exists q(x) ∈R bounded above by the left-hand side of (88) and below by the right-
hand side of (88), so (87) holds for all y1, y2 ∈ Y such that u(y1, x)< 0< u(y2, x). If x= x,
the right-hand side of (87) is 0, so (87) holds with q(x) = 0. If x ∈ (x,x), L’Hôpital’s rule for
y2 ↓ y∗(x) and y1 ↑ y∗(x) implies that q(x) = −v(y∗(x), x)g(x)/ux(y∗(x), x). Rearranging
(87) yields E(y,x)≥ 0 for all y 6= y∗(x), and thus for all y ∈ Y by continuity in y. Moreover,
by continuity in x, we have E(y,x)≥ 0 for all y ∈ Y . Q.E.D.

For each incentive-compatible persuasion mechanism πP , define

JπP (y,x) = P(state< y,decision≤ x) =

∫ y

y

(1− πP (x|ỹ))F (dỹ), for all (y,x) ∈ Y ×X.

If (52) holds, then so does (86), by Claim 10. Then, the principal gets a higher expected utility
under full disclosure than under πP , because

∫
VP (y,x)(−πP (dx|y)F (dy) =

∫
VP (y,x)JπP (dy,dx)

=

∫
(VP (y,x) + q(x)u(y,x))JπP (dy,dx)

≤
∫
VP (y,x∗(y))JπP (dy,dx) =

∫
VP (y,x∗(y))F (dy),

where the first and last inequalities are by the definition of JπP , the second equality is by
incentive compatibility of πP and the definition of q(x) and q(x) in (85), and the inequality is
by (86).

We now prove Remark 3. Suppose that u(y,x) = y− x and (53) holds. There are four cases
to consider depending on whether y and y are equal to x and x. By symmetry, it suffices to
consider the case y < x and y = x. By (85), q(x) = v(x,x)g(x) for x ∈ (x,x] and q(x) = 0.
Denote κ= miny,x∈Y×X vy(y,x). Note thatE(x,x) = 0. By Claim 10, (52) holds ifE(y,x)≥
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0 for all (y,x). If x= x, then E(y,x) = 0 for y ≤ x and E(y,x)≥ 0 for y > x, because

Ey(y,x) = v(y, y)g(y) +

∫ y

x

vy(y, x̃)g(x̃)dx̃≥ v(y, y)g(y) + κG(y)− κG(x)

≥ v(y, y)g(y) + κG(y)− κG(x)− v(x,x)g(x)≥ 0,

where the first inequality is by the definition of κ, and the second and third inequalities are by
(53). If x ∈ (x,x] and y ∈ (x,x], then E(y,x)≥ 0 because, for y ≥ (≤)x, we have

Ey(y,x) = v(y, y)g(y) +

∫ y

x

vy(y, x̃)g(x̃)dx̃− v(x,x)g(x)

≥ (≤)v(y, y)g(y) + κG(y)− κG(x)− v(x,x)g(x)≥ (≤)0,

where the first inequality is by the definition of κ, and the second inequality is by (53). Finally,
if x ∈ (x,x] and y ∈ [y,x], then E(y,x)≥ 0 because

Ey(y,x) =−
∫ x

x

vy(y, x̃)g(x̃)dx̃− v(x,x)g(x)≤ κG(x)− κG(x)− v(x,x)g(x)

≤ v(x,x)g(x) + κG(x)− κG(x)− v(x,x)g(x)≤ 0,

where the first inequality is by the definition of κ, and the second and third inequalities are by
(53). Q.E.D.

B.9. Proof of Proposition 4

By Corollary 2, it suffices to characterize optimal monotone partitions in the equivalent per-
suasion problem where

UP (s, t) = c(s)t− t2

2
and VP (s, t) = e(c(s))t− βt2

2
. (89)

A monotone partition B ∈ B is represented by a countable set of pooling intervals (bi, bi]. The
remaining states B̃ = S \

(⋃
i(bi, bi]

)
are revealed.

Let mi =
∫ bi
bi
c(s)ds/(bi − bi). Note that the left derivative of ηB is

η′B(s) =

{
e(c(s))− βc(s)

2
, if s ∈ B̃,

1

bi−bi

∫ bi
bi

(
e(c(s̃))− βc(s̃)

2

)
ds̃, if s ∈ (bi, bi].

(90)
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We have

WP (B) =

∫
B̃

VP (s, s)ds+
∑
i

∫ bi

bi

VP (s,mi) ds

=

∫
B̃

(
e(c(s))c(s)− β(c(s))2

2

)
ds+

∑
i

∫ bi

bi

(
e(c(s))mi −

βm2
i

2

)
ds

=

∫
B̃

c(s)ηB(ds) +
∑
i

∫ bi

bi

c(s)ηB(ds) =

∫
S

c(s)ηB(ds)

= ηB(1)−
∫
S

ηB(s)c(ds)≤ η(1)−
∫
S

conv η(s)c(ds),

(91)

where the first equality is by the definition of WP , the second equality is by (89), the third
equality is by (90) and

∫ bi
bi
mids=

∫ bi
bi
c(s)ds, the fourth equality is by B̃ ∪

(⋃
i(bi, bi]

)
= S,

the fifth equality is by integration by parts and normalizations c(0) = 0 and c(1) = 1, and the
inequality is by the definitions of ηB and conv η, and by ηB(1) = η(1). Finally, let B∗ be such
that conv η = ηB∗ . That is, conv η is linear on (b∗i , b

∗
i ] for each i and conv η = η on B̃∗. By

(91) and the strict monotonicity of c, we have WP (B)≤WP (B∗) for B ∈ B, with equality if
and only if ηB = conv η. Q.E.D.

B.10. Proofs of Claim 5 and Corollary 3

PROOF OF CLAIM 5: Suppose that U(1, x)≥ U(0, x), that is, 1− x≤ p(1). Then

∂V (s,x)

∂s
= βp(s)− (1− β)p′(s)s− β(1− x)≥ βp(s)− (1− β)p′(s)s− βp(1)≥ 0,

where the first inequality is by 1 − x ≤ p(1), and the second inequality is by p(s) ≥ p(1),
p′(s)≤ 0, and β ∈ [0,1]. Q.E.D.

PROOF OF COROLLARY 3: Part (1). We have

ν′(y) =

(
β − k

k+ 1

)
G(y)− k

k+ 1
g(y)y,

ν′′(y) = g(y)y

((
β − 2k

k+ 1

)
1

y
−
(

k

k+ 1

)
g′(y)

g(y)

)
.

Given (1), the expression in the parentheses is increasing. Corollary 1 implies that there exists
s∗ ∈ [0,1] such that delegation set {0} ∪ [s∗,1] is optimal.

Part (2). We have

η′(s) = e(c(s))− β

2
c(s) =

β

2
(1− p(s)) +

(
1− β

2

)
p′(s)s,

η′′(s) = (1− β)p′(s) +

(
1− β

2

)
p′′(s)s= p′(s)

(
1− β +

(
1− β

2

)
p′′(s)s

p′(s)

)
.

Given (2), the expression in the parentheses is decreasing, and p′(s)< 0. Proposition 4 implies
that there exists s∗ ∈ [0,1] such that delegation set {0} ∪ [s∗,1] is optimal. Q.E.D.
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APPENDIX C: COUNTEREXAMPLES

C.1. Failure of Equivalence Without Single-Crossing Utilities

First, we show that Lemma 1 does not hold if uD(s, t) is not upcrossing in s. Consider a
delegation problem with (uD, vD) given by

uD(s, t) =


1, (s, t) ∈ [0, 1

3
]× [ 1

2
,1],

−1, (s, t) ∈ ( 1
3
,1]× [ 1

2
,1],

0, otherwise,
vD(s, t) =

{
3, (s, t) ∈ ( 1

3
,1]× [0, 1

2
),

−1, otherwise.

Note that uD(s, t) is not upcrossing in s. Let

πD(s, t) =

{
1, (s, t) ∈ ( 1

3
,1]× [0, 1

2
),

0, otherwise.

Mechanism πD satisfies (ICD). However, in the discriminatory disclosure problem with
(uI , vI) = (uD, vD), mechanism πI = πD violates (ICI). Indeed, the agent with a type t ∈
[1/2,1] strictly prefers to misreport his type and choose the action opposite to the recommenda-
tion. Moreover, the principal’s expected utility of 1 attained by incentive-compatible delegation
mechanism πD is not attained by any incentive-compatible disclosure mechanism.

Second, we show that Lemma 2 does not hold if uI(s, t) is not aggregate downcrossing in t.
Consider a discriminatory disclosure problem with (uI , vI) given by

uI(s, t) =


−1, (s, t) ∈ [0, 1

3
]× [ 1

2
,1],

1, (s, t) ∈ ( 1
3
,1]× [ 1

2
,1],

0, otherwise,
vI(s, t) =

{
3, (s, t) ∈ [0, 1

3
]× [0, 1

2
),

−1, otherwise.

Note that uI(s, t) is not aggregate downcrossing in t (although it satisfies a weaker notion of
aggregate downcrossing defined by Karlin and Rubin, 1956). Let

πI(s, t) =


1, (s, t) ∈ (0, 1

3
]× [0, 1

2
),

1
2
, (s, t) ∈ ( 1

3
,1]× [0,1),

0, otherwise.

Mechanism πI satisfies (ICI). However, in the persuasion problem with (uP , vP ) = (uI , vI),
mechanism πP = πI violates (ICP ). Indeed, when s ∈ (1/3,1], the agent is recommended
decision t= 0 with probability 1/2. But, conditional on this recommendation, the agent infers
that s ∈ (1/3,1], in which case he strictly prefers t = 1. Moreover, the principal’s expected
utility of 1/6 attained by incentive-compatible disclosure mechanism πI is not attained by any
incentive-compatible persuasion mechanism.

C.2. Suboptimality of Monotone Mechanisms

First, we show that the principal’s expected utility can be strictly higher under non-monotone
disclosure and persuasion mechanisms than under any delegation mechanism. Consider a dis-
criminatory disclosure problem with (uI , vI) given by

uI(s, t) = 0, (s, t) ∈ [0,1]× [0,1], and vI(s, t) =

{
1, (s, t) ∈ [0, 1

2
]× [0,1],

−1, (s, t) ∈ ( 1
2
,1]× [0,1].
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The principal’s maximum utility of 1/2 is attained by the first-best disclosure mechanism

πI(s, t) =

{
1, (s, t) ∈ (0, 1

2
]× [0,1),

0, otherwise.

In the persuasion problem with (uP , vP ) = (uI , vI), mechanism πP = πI also maximizes the
principal’s expected utility. Now consider the delegation problem with (uD, vD) = (uI , vI).
Note that πD(s|t) = πI(s, t) is not a well-defined delegation mechanism, because πI is not
increasing in s. Moreover, since VD(s, t) = max{−s, s− 1} ≤ 0 for all (s, t), the principal’s
expected utility in delegation is at most 0.

Second, we show that the principal’s expected utility can be strictly higher under non-
monotone disclosure and delegation mechanisms than under any persuasion mechanism. Con-
sider a discriminatory disclosure problem with (uI , vI) given by

uI(s, t) = 0, (s, t) ∈ [0,1]× [0,1], and vI(s, t) =

{
−1, (s, t) ∈ [0,1]× [0, 1

2
),

1, (s, t) ∈ [0,1]× [ 1
2
,1].

The principal’s maximum utility of 1/2 is attained by the first-best disclosure mechanism

πI(s, t) =

{
1, (s, t) ∈ (0,1]× [ 1

2
,1),

0, otherwise.

In the delegation problem with (uD, vD) = (uI , vI), mechanism πD = πI also maximizes the
principal’s expected utility. Now consider the persuasion problem with (uP , vP ) = (uI , vI).
Note that πP (t|s) = πI(s, t) is not a well-defined persuasion mechanism, because πI is not
decreasing in t. Moreover, since VP (s, t) = max{−t, t− 1} ≤ 0 for all (s, t), the principal’s
expected utility in persuasion is at most 0.
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