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Abstract

Online appendices generalize the analysis to discontinuous distributions, multidimensional types, type-dependent preferences, and
verifiable private information of the sender and receiver.

Appendix C. Discontinuous distributions

This appendix relaxes the assumption that all distributions are continuous. Instead, assume that G (r) and F (s|r)
are arbitrary distributions whose supports are subsets of R and S =

[
s, s

]
. Lemma C1, a generalization of Lemma 1,

characterizes the optimal mechanism.

Lemma C1 The optimal mechanism is given by

φ∗ (m1|s, r) =


1 if s > s∗ (r) ,
π∗ (r) if s = s∗ (r) ,
0 if s < s∗ (r) .

(C.1)

If
∫ s

s sdF (s|r) ≥ u0, then s∗ (r) = s and π∗ (r) = 1; otherwise s∗ (r) ≤ 0 and q∗ (r) ≡ π∗ (r) Pr (s = s∗ (r) |r) ∈
[0,Pr (s = s∗ (r) |r)] are the unique solution to

Eφ∗ [s − u0|m1] =

∫
(s∗(r),s]

(s − u0) dF (s|r) + (s∗ (r) − u0) q∗ (r) = 0. (C.2)

Proof. By Fubini’s Theorem, the optimal mechanism φ∗ solves

maximize
φ(m1 |s,r)∈[0,1]

∫
R

(∫
S
φ (m1|s, r) dF (s|r)

)
dG (r)

subject to ∫
S

(s − u0) φ (m1|s, r) dF (s|r) ≥ 0 for all r ∈ R.

We can see that the problem is separable; specifically, for each r, the optimal mechanism φ∗ maximizes the inside
integral subject to the constraint. Therefore, φ∗ (m1|s, r) = φ̃∗ (m|s), where φ̃∗ (m|s) is the optimal mechanism in the
model in which r is fixed, and the distribution of s is given by F (s|r). Thus, we can omit r from consideration as if it
was fixed.
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Now I prove that if
∫ s

s sdF (s) < u0, then the optimal mechanism φ∗ satisfies (C.1) where (s∗, π∗) solves (C.2).

The remaining parts of Lemma C1 are immediate. Suppose to get a contradiction that there exists a mechanism φ̃
that results in a higher probability that the receiver acts: Prφ̃ (m1) > Prφ∗ (m1). In the next paragraph, I show that

Fφ∗ (s|m1) ≤ Fφ̃ (s|m1) for all s ∈
[
s, s

]
with strict inequality for s ∈

[
s∗, s), and, thus, Eφ∗ [s|m1] > Eφ̃ [s|m1] by the

well-known result (a strong version of Theorem 1 part 1). Therefore, Eφ̃ [s|m1] < u0 because Eφ∗ [s|m1] = u0 by (C.2).
The conclusion that Eφ̃ [s|m1] < u0 contradicts the assumption that the message m1 induces the receiver to act.

To complete the proof, I show that Fφ∗ (s|m1) ≤ Fφ̃ (s|m1) for all s ∈
[
s, s

]
with strict inequality for s ∈

[
s∗, s).

The inequality trivially holds for s < s∗ because Fφ∗ (s|m1) = 0 and for s = s because Fφ∗ (s|m1) = Fφ̃ (s|m1) = 1.
Denote the joint distribution of m and s by φ (m, s). The following sequence of equalities and inequalities proves that
Fφ∗ (s|m1) < Fφ̃ (s|m1) for s ∈

[
s∗, s):

1 − Fφ∗ (s|m1) =
φ∗ (m1, s) − φ∗ (m1, s)

Prφ∗ (m1)

=
F (s) − F (s)

Prφ∗ (m1)

=
φ̃ (m1, s) − φ̃ (m1, s)

Prφ∗ (m1)
+
φ̃ (m0, s) − φ̃ (m0, s)

Prφ∗ (m1)

≥
φ̃ (m1, s) − φ̃ (m1, s)

Prφ∗ (m1)

>
φ̃ (m1, s) − φ̃ (m1, s)

Prφ̃ (m1)

= 1 − Fφ̃ (s|m1) .

The first and last equalities hold by Bayes’ rule. The second equality holds by (C.1), which defines φ∗ (m, s). The third
equality holds by the consistency condition: φ (m1, s) + φ (m0, s) = F (s) for all mechanisms φ and all s ∈

[
s, s

]
. The

first inequality holds because φ (m0, .) is a distribution function of s. The second inequality holds by the assumption
that Prφ̃ (m1) > Prφ∗ (m1).

Proposition 1 holds regardless of whether F1 and F2 admit densities. The original proof of the second part of
Proposition 1 applies to arbitrary F1 and F2. To prove the first part of Proposition 1, one should replace the inverse
functions with the quantile functions in Theorem 1 part 3 (c) and in the original proof. Specifically, for an arbitrary
distribution P, the quantile function is defined as ϕ (p) ≡ inf {x : p ≤ P (x)}. If F2 ≥icx F1, then the receiver acts with
a higher probability under F2 than under F1 because∫ 1

F1(s∗1)−q∗1

ϕ2 ( p̃) dp̃ ≥
∫ 1

F1(s∗1)−q∗1

ϕ1 ( p̃) dp̃ =

∫
(s∗1,s]

sdF1 (s) + s∗1q∗1.

Conversely, if F2 �icx F1, there exists p such that
∫ 1

p ϕ2 ( p̃) dp̃ <
∫ 1

p ϕ1 (p̃) dp̃, so the receiver acts with a strictly

higher probability under F1 than under F2 if u0 =
∫ 1

p ϕ2 ( p̃) dp̃/ (1 − p). Using similar logic, it is straightforward to
extend all results to the case of arbitrary distribution functions.

Appendix D. Discussion of Proposition 3

Proposition 3 extends Proposition 2 to the general case of continuous s. Since r is multidimensional in this case,
the proposition relies on multidimensional stochastic orders presented in Appendix A (see Definition 2 and Theorem
2). For first-order stochastic dominance and any other stochastic order based on it, we need to introduce a partial order
on R. In the case of binary s, the set R is the unit interval [0, 1], a totally ordered set. But what order can we impose on
R when R is the set of distributions on

[
s, s

]
? To answer this question, consider two degenerate distributions G1 and

G2 that assign probability 1 to r1 = F1 and r2 = F2, respectively. Proposition 1 implies that the sender and receiver
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are better off under G2 if F2 ≥icx F1. To be able to compare such G1 and G2, Proposition 3 uses an increasing convex
order as a partial order on R.

We lose necessity in Proposition 3 because an increasing convex order is not a total order when s takes more than
two values. In part 2 of Proposition 3, we can actually use a total order on R and regain necessity. By Lemma 1,
only the distribution of E [s|r] matters for the receiver. Identifying r with E [s|r], we obtain the following result. The
receiver’s expected utility under the optimal mechanism is higher under G2 than under G1 for all u0 if and only if
G2 ≥icx G1, as follows from Theorem 1 part 3 (b) and

UR =

∫
R

max {u0,E [s|r]} dG (r) =

∫ r

r
max {u0, r} dG (r) = r −

∫ r

u0

G (r) dr.

For the results concerning the sender’s expected utility, we must use an increasing convex order on R because of
Proposition 1 part 1. But the fact that the sender’s expected utility is higher under G2 than under G1 for all u0 does
not imply that G2 ≥micv G1, so necessity cannot be regained. To see this, consider the following counterexample. Let
G1 assign probabilities (2/3, 1/3, 0) to

(
rA, rB, rC

)
, and G2 assign probabilities (0, 0, 1) to

(
rA, rB, rC

)
where rA assigns

probabilities
(
rA

1 , r
A
2 , r

A
3

)
= (0, 1/2, 1/2) to (s1, s2, s3) = (0, 1/2, 1), rB assigns probabilities (0, 7/8, 1/8) to (s1, s2, s3),

and rC assigns probabilities (3/8, 0, 5/8) to (s1, s2, s3).
By Lemma C1, the receiver acts with probability min

{
(4u0 − 2)−1 , 1

}
under rA, with probability min

{
(16u0 − 8)−1 , 1

}
under rB, and with probability min

{
(8u0/5)−1 , 1

}
under rC . By considering all cases (u0 ≤ 9/16, 9/16 < u0 ≤ 5/8,

5/8 < u0 ≤ 3/4, 3/4 < u0 ≤ 1, and u0 > 1), it is straightforward to check that the sender’s expected utility is always
higher under G2 than under G1.

By Theorem 1 part 3 (b), for any r and r′ supported on (s1, s2, s3), we have r ≥icx r′ if and only if r3 ≥ r′3 and
r2s2 + r3s3 ≥ r′2s2 + r′3s3. Thus, the function h (r) = 5 (r2 + 2r3) + r3 is increasing in r in the increasing convex order.
Moreover, h is concave in r because it is linear in r. However, the expectation of h is strictly higher under G1 than
under G2, which implies that G2 �micv G1.

Appendix E. Type-dependent preferences

This appendix allows the sender’s utility to depend not only on action a but also on type s in a linear way.
Specifically, assume that the sender’s utility is ((1 − ρ) s + ρs − u0) ·a, where ρ ∈ (0, 1). Notice that ρ = 0 corresponds
to type-independent preferences studied in the paper and ρ = 1 corresponds to perfectly aligned preferences of the
sender and receiver.

Under this specification, the sender’s expected utility under the optimal mechanism continues to be monotonic
in the distributions of the sender’s and public types both in the first-order stochastic dominance sense and the mean-
preserving spread sense. But the receiver’s expected utility is monotonic only in the distribution of public type and
only in the mean-preserving spread sense. Moreover, some of these results are no longer characterization results in
that necessity parts are lost.

The optimal mechanism either leaves no rent to the receiver as in Lemma 1 or gives the first-best outcome to the
sender in that the receiver acts if and only if (1 − ρ) s+ρs−u0 ≥ 0, which is equivalent to s ≥ s∗∗ ≡ (u0 − (1 − ρ) s) /ρ.

Lemma E2 The optimal mechanism is given by

φ∗ (m1|s, r) =

{
1 if s ≥ s∗ (r) ,
0 if s < s∗ (r) .

If s∗∗ ≤ s and EF [s|r] ≥ u0, then s∗ (r) = s; if s∗∗ > s and EF [s − u0|r, s ≥ s∗∗] ≥ 0, then s∗ (r) = s∗∗; otherwise
s∗ (r) ∈

(
s, u0

)
is the unique solution to EF [s − u0|r, s ≥ s∗ (r)] = 0.

Proof. The optimal mechanism φ∗ solves

maximize
φ(m1 |s,r)∈[0,1]

∫
S×R

((1 − ρ) s + ρs − u0) f (s|r) g (r) φ (m1|s, r) drds
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subject to ∫
S

(s − u0) f (s|r) φ (m1|s, r) ds ≥ 0 for all r ∈ R

where the objective function is the sender’s expected utility and the constraint requires that the receiver prefers to act
whenever he receives m1.

The Lagrangian for this problem is given by:

L =

∫
S×R

((1 − ρ) s + ρs − u0 + λ (r) (s − u0)) f (s|r) g (r) φ (m1|s, r) drds,

where λ (r) g (r) is a multiplier for the constraint. Since the choice variable φ (m1|s, r) belongs to the unit interval,
we have φ (m1|s, r) = 1 if s ≥ ((1 + λ (r)) u0 − (1 − ρ) s) / (ρ + λ (r)) and φ (m1|s, r) = 0 otherwise where λ (r) is 0 if∫ s

max{s,(u0−(1−ρ)s)/ρ}
(s − u0) f (s|r) ds ≥ 0 and is such that the constraint is binding otherwise.

The sender’s expected utility under the optimal mechanism is monotone in F such that parts 1 of Proposition 1
and Corollary 1 continue to hold.

Proposition E1 Let F1 and F2 be two distributions of s that do not depend on r. The sender’s expected utility under
the optimal mechanism is higher under F2 than under F1 for all u0 if and only if F2 is higher than F1 in the increasing
convex order.

Proof. Let s∗i be given by Lemma E2 where F is replaced with Fi. The sender’s expected utility under Fi is given by

US = (1 − ρ) (s − u0)
(
1 − Fi

(
s∗i

))
+ ρ

∫ s

s∗i

(s − u0) dFi (s)

If F2 ≥icx F1 (see Definition 1), then the sender can achieve a higher expected utility under F2 than under F1 because∫ s

F−1
2 (F1(s∗1))

(s − u0) dF2 (s) =

∫ 1

F1(s∗1)

(
F−1

2 ( p̃) − u0

)
dp̃ ≥

∫ 1

F1(s∗1)

(
F−1

1 ( p̃) − u0

)
dp̃ =

∫ s

s∗1

(s − u0) dF1 (s) ≥ 0,

where the equalities hold by the appropriate change of variables, the first inequality holds by Theorem 1 part 3 (c),
and the last inequality holds by Lemma 1. Conversely, if F2 �icx F1, then by Theorem 1 part 3 (c), there exists p such
that

∫ 1
p F−1

2 (p̃) dp̃ <
∫ 1

p F−1
1 ( p̃) dp̃. Since s∗2 is continuous in u0, s∗2 = s at u0 = s, and s∗2 = s at u0 = s, the mean value

theorem implies that there exists u0 such that F2

(
s∗2

)
= p at u0. Using an analogous argument, we get that the sender

achieves a strictly higher expected utility under F1 than under F2 at this u0:∫ s

F−1
1 (p)

(s − u0) dF1 (s) =

∫ 1

p

(
F−1

1 (p̃) − u0

)
dp̃ >

∫ 1

p

(
F−1

2 ( p̃) − u0

)
dp̃ =

∫ s

s∗2

(s − u0) dF2 (s) ≥ 0.

Similarly, fixing the prior distribution of the states as in Corollary 1, it is straightforward to show that the sender’s
expected utility is higher under one information structure than under another one for all values of u0 if and only if the
latter is a garbling of the former.

However, the receiver’s expected utility under the optimal mechanism changes ambiguously with F; so parts 2
of Proposition 1 and Corollary 1 no longer hold. For example, let u0 = 0, ρ = 2/3, and consider two distributions:
(i) F1 assigns probability 2/3 to s = −2 and probability 1/3 to s = 2, and (ii) F2 assigns equal probabilities to
s = −4 − x, s = x, and s = 2, where x ∈ (−2, 2). Under both distributions, s∗ (r) = s∗∗ = −1, because (1/3) · 2 > 0 and
(1/3) · x + (1/3) · 2 > 0. F1 is clearly a garbling of F2, but the receiver’s expected utility is higher under F2 if x > 0
and higher under F1 if x < 0.

The sender’s expected utility also increases in G in the increasing concave order but the receiver’s expected utility
increases in G only in the convex order; so Corollary 3 and part 1 of Proposition 3 continue to hold, but part 2 of
Proposition 3 no longer holds.
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Proposition E2 Let R be the set of distributions on
[
s, s

]
and let G1 and G2 be two distributions of r.

1. Let R be endowed with an increasing convex order. The sender’s expected utility under the optimal mechanism
is higher under G2 than under G1 for all u0 if G2 is higher than G1 in the increasing concave order.

2. The receiver’s expected utility under the optimal mechanism is higher under G2 than under G1 for all u0 if G2
is higher than G1 in the convex order.

Proof. The sender’s expected utility is
∫

R U∗S (r) dG (r) where U∗S (r) is the conditional expected utility. The function
U∗S is increasing in r in the increasing convex order by Proposition E1. Moreover, U∗S is concave in r, as I show in
Proposition 3. Therefore, part 1 of the proposition follows by Theorem 2 part 4.

The receiver’s expected utility under the optimal mechanism is

UR =

∫
R

max
u0, u0 +

∫ s

s∗∗
(s − u0) dF (s|r) ,

∫ s

s
sdF (s|r)

 dG (r) .

All three functions inside of the maximum are linear in r because the integrals are linear in F (.|r), which is identified
with r. The maximum of the three linear functions is convex in r. Therefore, Part 2 of the proposition follows by
Theorem 2 part 2.

Notice that part 2 of the proposition holds even if the sender’s utility is u (s) · a where u is an arbitrary continuous
function of s. Indeed, in this case, the optimal mechanism again either leaves no rent to the receiver or delivers the
first best outcome to the sender in that the receiver acts if and only if s ∈ S ∗∗ = {s : u (s) ≥ 0}. Then the only change in
the expression for UR in the proof of Proposition E2 is that the middle function inside of the maximum has integration
over S ∗∗. Since S ∗∗ does not depend on r, the middle function is still linear in r and the proof goes through.

Finally, the sufficiency parts of Proposition 2 and Corollary 2 hold, but the necessity parts no longer hold. Indeed,
if u0 ≥ (1 − ρ) s + ρs, then s∗ (r) = s∗∗ > s and the sender’s expected utility is

US = (s − u0)
∫ 1

0
rdG (r) ,

but if u0 < (1 − ρ) s + ρs, then s∗∗ < s and the sender’s expected utility is:

US =

∫
R

min

 s−u0
u0−s r

(
(1 − ρ) (s − u0) + ρ

(
s − u0

))
+ r (s − u0) ,

(1 − ρ) s + ρ
(
sr + s (1 − r)

)
− u0

 dG (r)

= ρ
(
s − s

) ∫ 1

0
rdG (r) +

(
(1 − ρ) s + ρs − u0

) 1 − s − s
u0 − s

∫ u0−s
s−s

0
G (r) dr

 ,

where the first equality holds by Lemma C1 and convention Pr (s|r) = r and the second by integration by parts. Notice
that the upper bound

(
u0 − s

)
/
(
s − s

)
in the last integral varies between 0 and 1 − ρ < 1 as u0 varies between s and

(1 − ρ) s + ρs. Therefore, the sender’s expected utility may be higher under G2 for all u0 even though
∫ x

0 G2 (r) dr is
higher than

∫ x
0 G1 (r) dr for some x ∈ (1 − ρ, 1), which implies that G2 is not higher than G1 in the increasing concave

order by Theorem 1 part 4 (b). A similar argument shows that the receiver’s expected utility may be higher under G2
for all u0 even though G2 is not higher than G1 in the increasing convex order.

Appendix F. Receiver’s verifiable private information

In this appendix, the receiver has verifiable private information at the ex ante stage. As usual, verifiable information
is the information that cannot be lied about but can be concealed. In this case, the sender extracts the receiver’s
information at no cost and then discloses her information optimally as if the receiver’s type was public. Therefore, all
results of Section 3 apply.

To illustrate this result, assume that type r is privately known by the receiver rather than publicly known. In other
respects, the environment is the same as in Section 2. In particular, players, actions, the information structure, and
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preferences are the same. In addition, assume that the set of receiver’s types R is given by
[
r, r

]
and is ordered in such

a way that s∗ (r) is strictly increasing in r where s∗ (r) is given by Lemma 1.
Assume that the set of receiver’s reports is N (r) =

[
r, r

]
. That is, the receiver can report any type that is lower

than his true type. Intuitively, the report n can be viewed as the receiver’s claim that his true type r is at least n and the
receiver’s claims are required to be truthful in that r must belong to

[
n, r

]
.

Now a mechanism φ sends a message m to the receiver as a (stochastic) function of (s, n). Finally, the timing of
the game is as follows: 1. The sender publicly chooses a mechanism φ (m|s, n). 2. The receiver’s type r is drawn
according to G. 3. The receiver makes a report n. 4. A pair (m, s) is drawn according to φ and F. 5. The receiver gets
a message m and takes an action a. 6. Utilities are realized.

Again, the solution concept used is PBE. In the unique PBE, the receiver discloses all her verifiable private
information, as Proposition F3 shows.

Proposition F3 In the unique PBE, the receiver reports his true type n = r and the sender chooses the optimal
mechanism φ∗ given by Lemma 1.

The proof of existence of fully revealing equilibrium is by construction. To show the uniqueness, I construct a
mechanism which is arbitrarily close to φ∗ and which makes the receiver strictly prefer to disclose his information.
Proof. I start by showing that the described strategies constitute a PBE. If the receiver reports n = r, then his interim
expected utility is max {u0,E [s|r]} as follows from Lemma 1. If the receiver reports n < r, then his interim expected
utility is again max {u0,E [s|r]} because s∗ (r) is increasing in r. Thus, given the mechanism φ∗, it is a best response
for the receiver to report his true type n = r. To see that it is optimal for the sender to choose φ∗ at the first stage, note
that φ∗ is the optimal mechanism in the relaxed problem where r is publicly known, so φ∗ gives a higher expected
utility to the sender than any other feasible mechanism.

To complete the proof, I show that in all PBEs, the sender chooses φ∗ and the receiver reports n = r. Suppose
to get a contradiction that there exists another PBE. In this PBE, the sender’s expected utility is strictly less than in
the above PBE because φ∗ is the optimal mechanism in the relaxed problem. Consider a mechanism φ̃ that sends the
message m1 if and only if s ≥ s∗ (r) + δ where δ > 0 is sufficiently small. Under this mechanism, the receiver strictly
prefers to report his true type r and the sender’s expected utility is arbitrarily close to that under φ∗. A contradiction.

Note that the mechanism φ∗ and truthful reporting of the receiver constitutes a PBE even if the sender has partial
commitment in that she can choose a mechanism only after the receiver’s report. However, this PBE is not unique in
this new model. For example, there exists a PBE in which the receiver always reports n = 0. Indeed, suppose that the
sender believes that each out-of-equilibrium report n , 0 is made by the receiver with type r = n. Note that under
such a belief, the sender chooses a mechanism φ∗ (m|s, n) for any n , 0. Thus, the receiver’s interim expected utility
from reporting n , 0 is max {u0,E [s|r]}, which is smaller than that from reporting n = 0.

Appendix G. Sender’s verifiable private information

In this appendix, the sender has verifiable private information before she chooses a mechanism. As a result, the
sender discloses all of this information. Thus, without loss of generality, the sender’s verifiable information can be
viewed as public information. Again, all results of Section 3 apply.

Assume that type r is privately known by the sender rather than publicly known. In other respects, the environment
is the same as in Section 2. In addition, assume that R is given by

[
r, r

]
and is ordered in such a way that s∗ (r) is

strictly decreasing in r. Finally, the sender’s information is verifiable in that the set of her reports is N (r) =
[
r, r

]
,

where the report n can be viewed as the sender’s truthful claim that her type is at least n.
The timing of the game is as follows: 1. The sender’s type r is drawn according to G. 2. The sender makes a

report n. 3. The sender publicly chooses a mechanism φ (m|s, n). 4. A pair (m, s) is drawn according to φ and F. 5.
The receiver gets a report n and a message m and takes an action a. 6. Utilities are realized.

Again, the solution concept is PBE. In the unique PBE, the sender discloses all her verifiable private information,
as Proposition G4 shows.
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Proposition G4 In the unique PBE, the sender reports her type truthfully, n = r, and chooses the optimal mechanism
φ∗ given by Lemma 1.

Proof. Suppose to get a contradiction that there exists a report n and a mechanism φn such that types r ∈
[
rn, rn

]
with rn > rn send n and choose φn with strictly positive probability. Let Gn denote the receiver’s belief about r upon
receiving n and observing φn. By definition of m1,∫

R

∫
S

(s − u0) f (s|r) φn (m1|s, r) dsdGn (r) ≥ 0.

Since the sender r does not want to deviate and reveal her type, we have∫
S

(s − u0) f (s|r) φn (m1|s, r) ds ≤ 0 for all r ∈
[
rn, rn

]
.

Taking into account the first inequality gives that the second inequality must hold with equality for all r ∈
[
rn, rn

]
.

Therefore, φn (m1|s) = φ∗ (m1|s, r) for all r ∈
[
rn, rn

]
where φ∗ is given by Lemma 1, otherwise the sender r would

prefer to reveal her type and choose φ∗. But this implies that s∗
(
rn

)
= s∗ (rn), which contradicts the assumption that

s∗ is strictly decreasing in r.
To conclude, I briefly comment on the case in which the sender’s type r is unverifiable in that the set of her reports

is N =
[
r, r

]
regardless of r. In this case, the full commitment optimum (φ∗∗ given by Lemma 1 where F (s|r) is

replaced with
∫

R F (s|r) dG (r) for all r) can be supported as an equilibrium outcome. Indeed, it is easy to see that there
exists a PBE in which for all r the sender makes the same report n and then chooses φ∗∗, whereas the receiver believes
that the sender’s type is r for any out-of-equilibrium event. However, there exist many other PBEs, which survives the
intuitive criterion. There exist not only pooling but also hybrid PBEs. For example, there may exist a PBE in which
types r < r∗ choose a mechanism that sends m1 for s ∈

[
s′, s

]
and types r ≥ r∗ choose a mechanism that sends m1 for

s ∈ [s′′, s′] ∪
[
0, s

]
, where s < s′′ < s′ < 0.
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