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Abstract

Growing evidence suggests that many social and economic networks are scale free

in that their degree distribution has a power-law tail. A common explanation for this

phenomenon is a random network formation process with preferential attachment. For

a general version of such a process, we develop the pseudo maximum likelihood and

generalized method of moments estimators. We prove consistency of these estimators

by establishing the law of large numbers for growing networks. Simulations suggest that

these estimators are asymptotically normally distributed and outperform the commonly

used non-linear least squares and Hill (1975) estimators in finite samples. We apply our

estimation methodology to a co-authorship network.
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1 Introduction

Many real networks have a degree distribution with a power-law tail.1 That is, the fraction

P (d) of vertices that have d neighbours is approximately proportional to d−γ for large d,

where γ is a positive constant called the power-law parameter. Such networks are called scale

free. The power-law parameter plays an important role for network topology and network-

related phenomena ranging from information dissemination and transmission of viruses to

aggregate macro-economic fluctuations (Albert and Barabasi, 2002; Gabaix, 2011; Acemoglu

et al., 2012). In this paper, we estimate the power-law parameter and other parameters for a

general model of random scale-free network formation.

Barabasi and Albert (1999) built the first theoretical model of scale-free network forma-

tion. In this model, as the network evolves, new edges are proportionally more likely to

connect to higher-degree vertices than lower-degree vertices. Such a process is called pref-

erential attachment. Cooper and Frieze (2003) and Cooper (2006) introduced and analyzed

a generalized model of scale-free network formation, hereafter referred to as the CF model.

Their model nests various scale-free network formation models, including the Barabasi and

Albert model and popular hybrid models, such as Jackson and Rogers (2007), in that the CF

model is able to generate networks with the same (asymptotic) degree distribution.

In the CF model, there is initially a small fixed network. At each subsequent period,

a new vertex and a random number of edges are added. Some of the added edges connect

the new vertex with the existing vertices, and others connect the existing vertices between

themselves. The endpoints of the added edges are chosen from the existing vertices uniformly

at random with some probability and by preferential attachment with the complementary

probability. Cooper (2006) shows that the asymptotic degree distribution in the CF model

depends only on the subset of parameters, with one parameter being the expected fraction

η of edge endpoints added by preferential attachment. Moreover, the asymptotic degree

distribution has a power-law tail, where the power-law parameter is 1 + 1/η.

1In this paper, we focus on the degree distribution because it is “one of the most fundamental of network

properties” (Newman, 2010, p. 243) and it determines many other topological properties (see, e.g., Graham,

2017, p. 1040, and references therein). Other network characteristics, such as clustering, can be parameterized

separately from the degree distribution, as suggested, e.g., by Bollobas and Riordan (2003).

Social networks (co-authorship, citation, inventor, movie actor, and sexual relation networks), economic net-

works (production, interbank market, power-grid networks), biological networks (ecological, cellular, protein,

and neural networks) and communication networks (WWW and cell phone networks) often exhibit a power

law in the tail of the degree distribution (see, e.g., Newman, 2001; Albert and Barabasi, 2002; Dorogovtsev

and Mendes, 2002; Jackson, 2008; Atalay et al., 2011).
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The goal of this paper is to develop a rigorous methodology for estimating the parameters

of the CF model that determine the asymptotic degree distribution. The challenge is that, in

random network formation models, the vertex degrees have non-standard interdependencies

and exhibit substantial heterogeneity (“older” vertices have a higher degree than “younger”

vertices).

Despite the existence of a variety of theoretical models of scale-free network formation,

there is a lack of econometric methods that estimate the structural parameters of these

models.2 Instead, the power-law parameter is often estimated using the log-log rank-degree

regression (Gabaix and Ibragimov, 2011, and references therein) or the Hill estimator (Hill,

1975). These popular estimators belong to a large class of tail estimators (Beirlant et al.,

2006). Most of these tail estimators, however, are designed for continuous independent ran-

dom variables that have identical distributions with a specific tail behaviour. Moreover, the

performance of tail estimators strongly depends on the appropriate choice of the number of

tail observations.

As an alternative to tail estimators, Pennock et al. (2002) and Jackson and Rogers (2007)

use non-linear least squares (NLS) to fit the empirical degree distribution to an approximation

of the parametrized asymptotic degree distribution. Goldstein et al. (2004) and Clauset

et al. (2009) illustrate that such procedures often give highly biased estimates of the model

parameters and argue that maximum likelihood estimation is much more robust.3

Most related to our paper, Atalay et al. (2011) and Atalay (2013) use pseudo maximum

likelihood (PML) to estimate the parameters of random network formation models. Specif-

ically, they calculate the pseudo likelihood assuming that each vertex degree is independent

and identically distributed according to the derived asymptotic degree distribution. Since

the vertex degrees in their models are interdependent and have different distributions, the

asymptotic and finite-sample properties of the PML estimator are not known, but they can

be analyzed using our methodology.

To estimate the parameters of the CF model, we develop a class of the generalized method

of moments (GMM) and PML estimators. These estimators are computationally simple,

2At the same time, there is a growing literature in the econometrics of non-scale-free network formation

and network estimation; see Chandrasekhar (2016) and de Paula (2017) for an overview and the recent

works of Christakis et al. (2010), Comola and Fafchamps (2014), Goldsmith-Pinkham and Imbens (2013),

Chandrasekhar and Jackson (2016), Chandrasekhar and Lewis (2016), Sheng (2016), Graham (2017), Mele

(2017), de Paula et al. (2018) among others.
3Jackson and Rogers (2007) note that deriving analytically and then computing numerically the true

likelihood of the degree sequence appears to be impossible for scale-free network formation models. König

(2016) uses likelihood-free Markov-Chain Monte Carlo methods to estimate a similar model.
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because they require calculating only a sample average of a moment function, as opposed

to calculating the true likelihood of the degree sequence. We show formally that the GMM

and PML estimators consistently estimate the parameters of the CF model. We also provide

a procedure for conservative variance estimation. The standard consistency results use the

uniform laws of large numbers for independent or weakly dependent random variables. But

we cannot use these results because the vertex degrees in the CF model have non-standard

interdependencies.

To prove consistency of the GMM and PML estimators, we establish the uniform law of

large numbers for growing networks from the first principles. Although we rely on certain

properties of the degree distribution established for the CF model, our proof is sufficiently

general and can be extended to other network formation models. We also establish the weak

convergence of the tail empirical measure to formally show consistency of the Hill estimator

for the CF model.

Our simulations suggest that the GMM and PML estimators perform well in finite sam-

ples; that is, the GMM and PML estimators have a substantially smaller bias and variance

than the NLS and Hill estimators. Moreover, the distribution of the GMM and PML esti-

mators is closer to the normal distribution compared to the distribution of the NLS and Hill

estimators. We apply our estimation methodology to the network of co-authorship relations

among economists, which was investigated in Goyal et al. (2006) and Jackson and Rogers

(2007). We build and provide a comprehensive estimation package, which includes the PML

and GMM estimators, various implementations of the NLS and Hill estimators, as well as

other commonly used tail estimators (see the Supplementary Appendix).

2 Network Formation Model

2.1 Setup

Following Cooper and Frieze (2003) and Cooper (2006), we describe the CF network formation

model as a statistical process. We then discuss its relation to other growing network models,

economic micro-foundations, and applications in Section 2.3.

Consider a random graph process, (G(t))t≥1 = (V (t), E(t))t≥1, where V (t) is a set of

vertices and E(t) is a set of edges at the end of each time t ∈ {1, 2, . . . }.4 In economic appli-

4Formally, we should refer to this process as a multi-graph process as we allow for loops (i.e., edges joining

a vertex to itself) and multiple edges (i.e., several edges joining the same two vertices). However, relying on

Bollobas et al. (2001), we expect that the fraction of multiple edges and loops goes to 0 as t → ∞ for the
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cations, the vertices typically represent economic agents and the edges represent their con-

nections. Let G(1) be an initial graph that contains |V (1)| ≥ 1 vertices and |E(1)| ≥ 1 edges

(the number of elements of any finite set X is denoted by |X| hereafter). For t ≥ 2, the

random graph G(t) is obtained from G(t − 1) as follows. A new vertex, indexed by its

birth-time t, is added to the graph. The new vertex forms a random number of edges m(t)

connecting it with some existing (“old”) vertices in V (t− 1). At the same time, old vertices

in V (t− 1) form a random number of edges M(t) between themselves. Both m(t) and M(t)

are bounded from above by integers P and Q, and are independently distributed (among

themselves and across time) according to finite support distributions p = (p0, . . . , pm, . . . , pP )

and q = (q0, . . . , qM , . . . , qQ), where pm = Pr(m(t) = m) and qM = Pr(M(t) = M). These

distributions characterize agents behaviour in forming new connections over time. Denote

an average number of new-old edges added at t by m = E (m(t)) and an average number of

old-old edges added at t by M = E (M(t)). We assume that there is a positive probability

that at least one edge is added, i.e., m + M > 0. Denote the degree (i.e., the number of

immediate neighbours) of a vertex v of the graph G(t) by d(v, t).

Next, we define with whom the agents form connections. First, consider edges emi (t),

i = 1, . . . ,m(t), originating from new vertex t. The terminal vertex of each edge emi (t),

the vertex with which t connects, is chosen independently from V (t − 1) by preferential

attachment5 with probability A1 and uniformly at random with probability A2 = 1− A1:

Pr(v is a terminal vertex of emi (t)) = A1
d(v,t−1)
2|E(t−1)| + A2

1
|V (t−1)| .

Second, consider edges eMi (t), i = 1, . . . ,M(t), connecting old vertices in V (t − 1). The

initial vertex and the terminal vertex of each edge eMi (t) are chosen independently by pref-

erential attachment with respective probabilities B1 and C1 and uniformly at random with

respective probabilities B2 = 1− B1 and C2 = 1− C1:

Pr(v is an initial vertex of eMi (t)) = B1
d(v, t− 1)

2|E(t− 1)| +B2
1

|V (t− 1)| ,

Pr(v is a terminal vertex of eMi (t)) = C1
d(v, t− 1)

2|E(t− 1)| + C2
1

|V (t− 1)| .

Define Dt(d) as the number of vertices of the graph G(t) that have degree d. The degree

distribution Pt(d) is defined as the fraction of vertices of the random graph G(t) that have

considered process. Furthermore, we treat all edges as undirected, but it is straightforward to extend the

analysis to directed graph processes.
5Preferential attachment to higher-degree vertices arises naturally in growing networks, more detailed

micro-foundations are in Section 2.3. Importantly, the network is scale free if and only if the attachment

probability is asymptotically linear in the vertex degree.
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degree d; that is, Pt(d) = Dt(d)/|V (t)| is a random variable. Corollary 1 in the next sub-

section shows that Pt(d) converges in probability to P (d) for all d as t → ∞. The limiting

fraction P (d) is called the asymptotic degree distribution of the graph process (G(t))t≥1.

Corollary 1 also shows that the asymptotic degree distribution P (d) of the graph process

(G(t))t≥1 is fully characterized by the initial degree probability distribution of the newly

added vertices, p, the average number of old-old edges, M , and the limiting fraction of edge

endpoints added by preferential attachment, η, defined as

η =
mA1 +M(B1 + C1)

2(m+M)
.

Parameter p uniquely defines m which we will often use to simplify notation. In this vein,

we will also use parameter κ ≥ 0 defined as

κ =
(m+ 2M)

η
− 2(m+M).

As in Cooper and Frieze (2003), we assume that the parameters are such that 0 < η < 1 holds.6

Note that the structural parameters A1, B1, C1, and q cannot be individually identified from

the asymptotic degree distribution and we focus on estimating p, M , and η.

2.2 Asymptotic Degree Distribution

Our derivation of the asymptotic degree distribution relies on the results of Cooper (2006)

presented in Appendix A. Proposition 1 restates the concentration results of Cooper (2006)

in a form convenient for our analysis.

Proposition 1 For 0 ≤ d ≤ d∗t (η), where d
∗
t (η) = min{tη/3, t1/6/ ln2 t}, we have the following

Pr

󰀕󰀏󰀏󰀏󰀏
Dt(d)

|V (t)| − P (d; η,M,p)

󰀏󰀏󰀏󰀏 ≥ 2
P (d; η,M,p)√

ln t

󰀖
= O

󰀕
1

ln t

󰀖
,

where P (d; η,M,p) is the asymptotic degree distribution given by

P (d; η,M,p) =

min{P,d}󰁛

m=0

pm
Γ (m+ κ+ 1/η)

ηΓ (m+ κ)

Γ (d+ κ)

Γ (d+ κ+ 1 + 1/η)

and Γ(·) is the gamma function.

Corollary 1 demonstrates the limiting properties of the degree distribution.
6In contrast to Cooper and Frieze (2003) who assume that p0 = 0 and q0 = 0, (i.e., each vertex has

at least one neighbour), our model allows vertices to have zero degree to conform with real network data.

Nevertheless, if 0 < η < 1, all results and corresponding proofs from Cooper (2006) remain valid.
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Corollary 1 We have the following:

1. The degree distribution Pt(d) = Dt(d)/|V (t)| of the graph G(t) converges in probability

to P (d; η,M,p) as t → ∞.

2. The asymptotic degree distribution P (d; η,M,p) for d ≥ P has a power-law tail with

the power-law parameter 1 + 1/η:

P (d; η,M,p) = C(η,M,p)d−1−1/η

󰀕
1 +O

󰀕
1

d

󰀖󰀖
,

C(η,M,p) =
P󰁛

m=0

pm
Γ (m+ κ+ 1/η)

ηΓ (m+ κ)
.

3. When the probability of preferential attachment tends to zero, the asymptotic degree

distribution approaches a distribution proportional to the geometric distribution:

lim
η→0

P (d; η,M,p) =

󰀳

󰁃
min{P,d}󰁛

m=0

pm(1− λ)−m

󰀴

󰁄λ(1− λ)d,

where λ = (2M +m+ 1)−1 is the parameter of the geometric distribution.

2.3 Discussion and Examples

The CF model nests many network formation models in that it is able to generate networks

with (asymptotic) degree distributions ranging from the exponential degree distribution of

the growing Poisson random networks to the power-law degree distribution of preferential

attachment networks, including any degree distribution of a hybrid model embedding the

elements of both.7 Importantly, we use the CF model to characterize only the degree dis-

tribution, rather than clustering and other characteristics of social and economic networks.

Bollobas and Riordan (2003, Theorem 5) suggest that it is possible to introduce any level

7Specifically, to obtain the preferential attachment graph of Barabasi and Albert (1999), set pm = 1, q0 =

1, A1 = 1, so η = 1/2 and M = 0; for the hybrid graph in Jackson (2008, Chapter 5), set pm = 1, q0 =

1, A1 = 1 − α; for the hybrid graph in Pennock et al. (2002), set p0 = 1, qm = 1, B1 = C1 = α. The

setting in Dorogovtsev et al. (2000) and Buckley and Osthus (2004), where the probability of connecting to

a new vertex is proportional to the sum of the initial attractiveness A and degree d(v, t− 1), can be reflected

in the CF model with pm = 1, q0 = 1, A1 = 1/ (1 +A/2m) . A version of the copying model of Kleinberg

et al. (1999) and Kumar et al. (2000), in which a new vertex either forms a random edge (with probability α)

or copies one edge from an existing vertex (with probability 1 − α), is also covered by the CF model with

pm = 1, q0 = 1, A1 = 1− α.

7



of clustering in a graph process with preferential attachment without changing the asymp-

totic degree distribution; Dorogovtsev and Mendes (2002) and Jackson and Rogers (2007)

provide examples of such processes. Hence, the CF model may be extended to include any

level of clustering, and similar arguments can be made about other network characteristics.

Thus, information about clustering and other characteristics is of limited use for estimating

parameters (η,M,p), which determine the degree distribution in the CF model.

The statistical network models based on preferential attachment, including the CF model,

provide a good fit to real physical, social and economic networks. However, these models lack

rigorous micro-foundations for individual strategic behaviour and structural interpretation of

game-theoretic link formation models specified in Christakis et al. (2010), König et al. (2014),

and Mele (2017) among others. A growing literature is trying to fill this gap.

Jackson and Rogers (2007) built a growing network model related to the CF model us-

ing intuitive behavioural principles which motivate preferential attachment. In this model,

new vertices connect with existing vertices in two steps: uniformly at random (“meeting

strangers”), and through the direct neighbours of the linked vertices (“meeting friends of

friends”). This model has the properties of preferential attachment since the probabilities

of connecting to friends of friends are proportional to their in-degree.8 Jackson and Rogers

applied the model to web links formation and various social networks including co-authorship,

citation, friendship, and romantic relations. This model has been widely used in the liter-

ature. Mayer and Puller (2008) used it to describe social networks on university campuses.

Chaney (2014) applied a similar model to firms searching for new partners in the context

of international trade. Atalay et al. (2011) applied an expanded model to input-output link

formation in a production network. Luttmer (2011) proposed a related model of firm growth.

There is a well-established literature with micro-founded strategic network formation mod-

els, starting from Jackson and Wolinsky (1996) and Bala and Goyal (2000). In these models,

a star network typically emerges as an equilibrium configuration. Introducing noise in the

decision-making process of agents in these strategic network formation models leads to the

emergence of networks with preferential attachment, similarly to the CF model. König (2016)

provides an example of such a model. In particular, he builds a micro-founded network for-

mation model with general marginal payoff functions in the information sharing environment.

8The CF model is able to generate the asymptotic degree distribution of the Jackson and Rogers (2007)

model by setting m = mnpn+mrpr, q0 = 1, A1 = prmr/m, A2 = 1−A1, where mr and mn are the numbers

of considered edges with strangers and friends of friends, respectively, and pr and pn are the corresponding

probabilities of creating an edge; and modifying the probability of attachment to A1di(v, t− 1)/|E(t− 1)|+
A2/|V (t− 1)| to adjust for the undirected graph (compare with (1) in Jackson and Rogers, 2007).
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The model is similar to the Jackson and Rogers (2007) growing network, where new agents

meet strangers and friends of friends to form edges. The innovation is that the benefits of

forming an edge with strangers and friends of friends are modelled explicitly and idiosyncratic

noise is added in decision making. With a small amount of noise, centralized star-type net-

works emerge, but with a large amount of noise and a small pool of potential connections, the

networks that exhibit preferential attachment and a power-law tail in the degree distribution

emerge. In the latter case, the asymptotic degree distribution (König, 2016, Proposition 2)

is analogous to the asymptotic degree distribution in the CF model given by Proposition 1.

3 Methodology

3.1 Preliminaries

We propose the PML and GMM estimators for the parameters of the asymptotic degree distri-

bution of the CF model. As shown in Corollary 1, the asymptotic degree distribution depends

only on the subset of parameters of the model, specifically on η, M , and p = (p0, . . . , pP ).

Section 3.3 shows that these parameters are identified. Parameter η is of the highest interest

in this model as it determines the power-law parameter 1+1/η. From the setup of the model

it is clear that η ∈ (0, 1), M ∈ [0,∞), and p ∈ ∆P , where ∆P = {p ∈ RP+1
+ :

󰁓P
i=0 pi = 1}

is a P dimensional simplex.9 We assume that the dimensionality P of p is known; i.e., it is

known how many parameters we need to estimate. In applications where P is unknown, it

can be chosen using model selection procedures such as AIC or BIC (see, e.g., Burnham and

Anderson, 2002), but we do not explore the asymptotic properties of such procedures.

Let θ = (η,M,p), i.e., θ is a multi-dimensional parameter with the domain Θ = (0, 1)×
[0,∞) ×∆P . To represent the true value, a generic value, and an estimate, we write θ0, θ,

and 󰁥θ, respectively.
In Section 3.3 we specify the estimators and establish their consistency as t goes to infinity.

This asymptotics is similar to the standard large sample asymptotics, in which the number

of observations goes to infinity. In the random graph process that we consider, one vertex

and at most P +Q edges are added at each time t. Thus, all asymptotic results will continue

to hold if we consider alternative asymptotics, in which the number of vertices |V (t)| or the
number of edges |E(t)| of the graph G(t) goes to infinity, since |V (t)| → ∞, |E(t)| → ∞, and

t → ∞ are equivalent.

9Formally, because of the assumption m + M > 0, whenever M = 0 we should eliminate point p =

(1, 0, ..., 0), which corresponds to p0 = 1, from simplex ∆P .
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3.2 Laws of Large Numbers

Before introducing the estimators and establishing their consistency, we establish the uniform

law of large numbers under non-standard conditions prevalent in growing network models.

The standard regularity conditions for establishing consistency of estimators are continuity

and uniform convergence. We can establish continuity by checking the standard technical

conditions for the distribution function P (d;θ) given by Proposition 1. However, we cannot

establish uniform convergence using the standard uniform laws of large numbers for inde-

pendent or weakly-dependent stationary processes, because the CF model yields substantial

heterogeneity in the vertex degree distributions and nonstandard vertex degree interdepen-

dencies. The main technical contribution of the paper is the uniform law of large numbers

established for the CF model.10

Proposition 2 If a(d;θ) is a matrix of functions continuous in θ on a compact set Θ ⊂ Θ,

and there is F such that 󰀂a(d;θ)󰀂 < Fd for all d ∈ N+ and all θ ∈ Θ, where 󰀂a(d;θ)󰀂 =󰀓󰁓
j,k a

2
jk

󰀔1/2

is the Euclidean norm, then we have the following:

1. G0(θ) =
󰁓∞

d=0 a(d;θ)P (d;θ0) is continuous in θ.

2. supθ∈Θ

󰀐󰀐󰀐 󰁥Gt(θ)−G0(θ)
󰀐󰀐󰀐 P→ 0, where 󰁥Gt(θ) =

󰁓∞
d=0 a(d;θ)Dt(d)/|V (t)|.

To prove Proposition 2, we do not heuristically impose any specific dependence structure

on the vertex degrees but instead use the concentration result of Proposition 1. To illustrate

the key steps of the proof, suppose that a (d;θ) is a function a(d) that does not depend

on θ and satisfies 0 < a(d) < d. Part 1 of Proposition 2 holds because
󰁓n

d=0 a(d)P (d;θ0)

is a converging series as follows from η0 < 1, a(d) < d, and P (d;θ0) being approximately

proportional to d−1−1/η0 by part 2 of Corollary 1. To prove part 2, we bound
󰀏󰀏󰀏 󰁥Gt(θ)−G0(θ)

󰀏󰀏󰀏
by the sum of the three terms as follows

󰀏󰀏󰀏 󰁥Gt(θ)−G0(θ)
󰀏󰀏󰀏 ≤

∞󰁛

d=d⋄t

a(d)P (d;θ0)

󰁿 󰁾󰁽 󰂀
󰁥S1

+

d⋄t−1󰁛

d=0

a(d)

󰀏󰀏󰀏󰀏
Dt(d)

|V (t)| − P (d;θ0)

󰀏󰀏󰀏󰀏
󰁿 󰁾󰁽 󰂀

󰁥S2

+
∞󰁛

d=d⋄t

a(d)
Dt(d)

|V (t)|
󰁿 󰁾󰁽 󰂀

󰁥S3

,

and show that each term converges in probability to zero if d⋄t grows to infinity at a rate much

slower than ln t and d∗t (η0). 󰁥S1
P→ 0 again by part 2 of Corollary 1. 󰁥S2

P→ 0 by the concentra-

tion result of Proposition 1. Finally, 󰁥S3 can be bounded above by
󰁓∞

d=d⋄t
dDt(d)/|V (t)|, which

10We closely follow Newey and McFadden (1994) notation. Symbols ⇝ and
P→ stand for convergence in

distribution and probability, respectively. OP (1) and oP (1) are stochastic order symbols, formally defined in

van der Vaart (2000).
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is equal to the difference between 󰁥S4 =
󰁓∞

d=0 dDt(d)/|V (t)| and 󰁥S5 =
󰁓d⋄t−1

d=0 dDt(d)/|V (t)|.
󰁥S5

P→ 2(m0 +M0) by Proposition 1 and part 1 of Corollary 1. Finally, 󰁥S4
P→ 2(m0 +M0) by

the law of large numbers applied to independent draws of m(t) +M(t). Therefore, 󰁥S3
P→ 0,

and part 2 of Proposition 2 follows.

Using Proposition 1 and Corollary 1, we can also establish the weak convergence of the

tail empirical measure, which is a crucial property for consistency of tail estimators.

Proposition 3 If kt/t → 0 and kt
√
ln t/t → ∞ as t → ∞, then, for all x > 0,

1

kt

∞󰁛

d=[xF
−1

(kt/t)]

Dt(d)
P→ x−1/η0 ,

where F (z) =
󰁓∞

d=[z] P (d;θ0), with z ≥ 0, and F
−1
(y) = inf{d : F (d) ≤ y}, with 0 < y < 1.

3.3 Consistency of PML, GMM, and Hill Estimators

The established laws of large numbers allow us to extend the standard consistency results to

our network formation model. We define the pseudo log-likelihood based on the asymptotic

degree distribution given by Proposition 1 as follows:

󰁥Lt(θ) =
∞󰁛

d=0

Dt(d)

|V (t)| lnP (d;θ).

The true log-likelihood is different from the pseudo log-likelihood, because (i) the vertex

degrees are interdependent, and (ii) the finite sample and asymptotic degree distributions

differ.

The PML estimator is defined as:

󰁥θ
PML

= argmax
θ∈Θ

󰁥Lt(θ).

The plug-in PML estimator is formally defined as:

󰁥θ
PML

P = argmax
θ∈Θ

󰁥Lt(θ),

s.t. m+M =
1

2

∞󰁛

d=0

d
Dt(d)

|V (t)| .

That is, 󰁥θ
PML

P is obtained by replacing m+M in 󰁥Lt(θ) with its estimate11

󰁦m+M =
1

2

∞󰁛

d=0

d
Dt(d)

|V (t)|

11Parameter M is first expressed as (m+M)−
󰁓P

m=0 mpm.

11



and maximizing 󰁥Lt(θ) over the remaining parameters η and p. The estimator 󰁥θ
PML

P is faster

to compute than 󰁥θ
PML

, because it requires maximization over one less parameter. Notice that
󰁦m+M consistently estimates m0 +M0, by the law of large numbers applied to independent

random variables m(t) and M(t).

Consistency of the PML and plug-in PML estimators is established in Proposition 4.

Proposition 4 Let Θ ⊂ Θ be compact and θ0 ∈ Θ. If 󰁥θ satisfies 󰁥Lt(󰁥θ) ≥ maxθ∈Θ
󰁥Lt(θ) +

oP (1), then 󰁥θ P→ θ0. In particular, 󰁥θ
PML P→ θ0 and 󰁥θ

PML

P
P→ θ0.

We now consider a more general class of GMM estimators. A GMM estimator 󰁥θ is defined

as θ that maximizes

󰁥Qt(θ) = −
󰀥 ∞󰁛

d=0

g(d;θ)
Dt(d)

|V (t)|

󰀦′

󰁦W
󰀥 ∞󰁛

d=0

g(d;θ)
Dt(d)

|V (t)|

󰀦
,

where 󰁦W is a positive semi-definite matrix and the moment function vector g(d;θ) satisfies

∞󰁛

d=0

g(d;θ0)P (d;θ0) = 0.

Since Proposition 1 gives the explicit expression for P (d;θ), it is easy to verify whether a

given g(d;θ0) has zero mean. In particular, from the discussion of the PML estimators, it

is evident that this property is satisfied for the moment function vector that consists of the

score function vector and the degree function:

g(d;θ) =
󰀃
∇θ lnP (d;θ), d− 2(m+M)

󰀄′
.

Proposition 5 specifies sufficient conditions on moment function g(d;θ) and matrix 󰁦W for

the GMM estimator 󰁥θ to be consistent.

Proposition 5 Let 󰁥θ maximize 󰁥Qt(θ) where 󰁦W P→ W , and (i) W
󰁓∞

d=0 g(d;θ)P (d;θ0) = 0

only if θ = θ0; (ii) θ0 ∈ Θ ⊂ Θ where Θ is compact.

1. If (iii) g(d;θ) is continuous on Θ; and (iv) there is F such that 󰀂g(d;θ)󰀂 < Fd for all

d ∈ N+ and all θ ∈ Θ, then 󰁥θ P→ θ0.

2. If g(d;θ) =
󰀃
∇θ lnP (d;θ), d− 2(m+M)

󰀄′
, then 󰁥θ P→ θ0.

Conditions (i), (ii), and (iii) are the standard identification, compactness, and continuity

assumptions (see, e.g., Newey and McFadden, 1994, Theorem 2.6). Condition (iv) is required

for the uniform law of large numbers established in Proposition 2.

12



We suggest using the moment function vector that consists of the score function vector

and the degree function. With appropriately chosen weights in 󰁦W , the GMM estimators

based on this moment function vector nest the PML and plug-in PML estimators when they

are viewed as solutions to their first-order conditions. In particular, 󰁥θ
PML

is a solution to

∞󰁛

d=0

∇θ lnP (d;θ)
Dt(d)

|V (t)| = 0;

so it can be viewed as a GMM estimator with 󰁦W that puts the full weight on the score

function and no weight on the degree function.

As part 2 of Proposition 5 shows, to ensure consistency of the GMM estimators based on

this moment function vector, we only need to check the identification condition (i). In contrast

to the identification of the PML and plug-in PML estimators established in Proposition 4,

it is difficult to specify primitive conditions on g(d;θ) and W such that the identification

condition holds. A common practice in the GMM literature, therefore, is to simply assume

identification (see, e.g., Newey and McFadden, 1994, p. 2127).12

The Hill estimator, which is the most common tail estimator, is defined as

󰁥ηHill =
1

kt

∞󰁛

d=d†t+1

Dt(d) ln
d

d†t

for some d†t and kt =
󰁓∞

d=d†t+1
Dt(d).

Consistency of the Hill estimator for the CF model is established in Proposition 6.13

Proposition 6 If kt/t → 0 and kt
√
ln t/t → ∞ as t → ∞, then 󰁥ηHill P→ η0.

12It is easier to verify a local identification condition, which requires that there is a unique solution to

W
󰁓∞

d=0 g(d;θ)P (d;θ0) = 0 only in some neighbourhood of θ0. As Rothenberg (1971) shows, a sufficient

condition for local identification is that WG has full column rank, where G =
󰁓∞

d=0 ∇θg(d;θ0)P (d;θ0). At

the end of the proof of Proposition 7 we derive G; so for given θ0 and W , we can numerically verify local

identification – in particular, it holds for the GMM estimators used in our simulations.
13Using Proposition 6, we can establish consistency of related tail estimators by showing that they have

the same probability limit as 󰁥ηHill. For example, for a discrete distribution, Clauset et al. (2009) propose

󰁥ηHill
C =

1

kt

∞󰁛

d=d†
t+1

Dt(d) ln
d

d†t + 1/2
.

This estimator is consistent because d†t/[xF
−1

(kt/t)]
P→ 1, and thus (d†t + 1/2)/d†t

P→ 1, by Resnick and

Stărică (1995, Proposition 2.1).
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3.4 Discussion of Asymptotic Normality and Variance

We now specify sufficient conditions for establishing asymptotic normality of the GMM esti-

mators, and thus of the PML and plug-in PML estimators.

Proposition 7 Let 󰁥θ maximize 󰁥Qt(θ), where g(d;θ) =
󰀃
∇θ lnP (d;θ), d− 2(m+M)

󰀄′
,

󰁦W P→ W , 󰁥θ P→ θ0, and θ0 ∈ interior(Θ). If (i) G′WG is nonsingular where

G =
󰁓∞

d=0 ∇θg(d;θ0)P (d;θ0), and (ii)
󰁳

|V (t)|
󰁓∞

d=0 g(d;θ0)Dt(d)/|V (t)| ⇝ N [0,Σ], then

󰁳
|V (t)|

󰀓
󰁥θ − θ0

󰀔
⇝ N

󰁫
0, (G′WG)

−1
G′WΣWG (G′WG)

−1
󰁬
.

Condition (i) holds under local identification (see Footnote 12). Condition (ii) is an asymp-

totic normality condition for a sample average of g(d;θ0). Asymptotic normality is supported

by our simulations but is not proved formally.

To obtain a consistent estimate of the asymptotic variance of 󰁥θ, we need to find consistent

estimates of G and Σ.14 G can be consistently estimated by 󰁥G =
󰁓∞

d=0 g(d;
󰁥θ)Dt(d)/|V (t)|,15

but obtaining a consistent estimate of Σ is complicated due to vertex degree interdependencies

of unknown form. Moreover, some of the nuisance parameters affect Σ but are not identified

from the asymptotic degree distribution P (d;θ). To illustrate this point, consider the plug-in

PML estimator. The estimate 󰁦m+M is asymptotically normally distributed. Indeed,

󰁳
|V (t)|

󰀓
󰁦m+M −m0 −M0

󰀔
=

󰁳
|V (t)|

󰀣
1

2

∞󰁛

d=0

d
Dt(d)

|V (t)| −m0 −M0

󰀤

⇝ N [0,Var(m(t)) + Var(M(t))] ,

by the central limit theorem applied to independent random variables m(t) and M(t). But

the asymptotic variance Var(m(t)) + Var(M(t)) depends on the distribution q of M(t) that

is not identified from P (d;θ0).
16

14By the assumptions of Proposition 7, 󰁦W P→ W and G′WG is nonsingular. If, in addition, 󰁥G P→ G and

󰁥Σ P→ Σ, then by continuous mapping theorem,

󰀓
󰁥G′󰁦W 󰁥G

󰀔−1 󰁥G′󰁦W 󰁥Σ󰁦W 󰁥G
󰀓
󰁥G′󰁦W 󰁥G

󰀔−1 P→ (G′WG)
−1

G′WΣWG (G′WG)
−1

.

15Consistency, continuity, and uniform convergence imply:

󰀐󰀐󰀐 󰁥G−G
󰀐󰀐󰀐 ≤

󰀐󰀐󰀐 󰁥G−G(󰁥θ)
󰀐󰀐󰀐+

󰀐󰀐󰀐G(󰁥θ)−G
󰀐󰀐󰀐 ≤ sup

θ∈Θ

󰀐󰀐󰀐󰀐󰀐

∞󰁛

d=0

g(d;θ)
Dt(d)

|V (t)| −G(θ)

󰀐󰀐󰀐󰀐󰀐+
󰀐󰀐󰀐G(󰁥θ)−G

󰀐󰀐󰀐 P→ 0.

16This asymptotic variance could be estimated if the time evolution of the network was observed.
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We propose conservative variance estimates of 󰁥θ based on a parametric bootstrap (Efron

and Tibshirani, 1994, Chapter 6.5) and the principle of maximum entropy (Maasoumi, 1993).17

The procedure consists of the following steps: (1) compute an estimate 󰁥θ from the original

network with t vertices; (2) generate N networks with t vertices each by sampling from the

CF model with the parameter 󰁥θ; (3) compute an estimate 󰁥θ
∗
from each network; and (4)

calculate the sample variance of the N estimates 󰁥θ
∗
. For sufficiently large N , this sample

variance approximates the variance of the estimate 󰁥θ (see, e.g., Horowitz, 2001).

Since parameters q, A1, B1, and C1, which are necessary to sample from the parametric

CF model, are not fully identified, we use the principle of maximum entropy in our procedure

and choose q to be a geometric distribution, i.e., qM = γ(1− γ)M for M ∈ {0, 1, . . . }, where
γ = (󰁦M + 1)−1; and A1 = B1 = C1 = 2󰁥η(󰁥m+󰁦M)/(󰁥m + 2󰁦M). The principle of maximum

entropy aims to specify the least informative distribution subject to (partially) available

information. It is well known that our choice of the geometric distribution for q maximizes

the entropy of M(t) subject to the constraints that the support of M(t) is {0, 1, . . . } and the

expectation of M(t) is 󰁦M .

We now show that our choice of (A1, B1, C1) asymptotically maximizes the entropy of

the fraction of endpoints added by preferential attachment 󰁨η, subject to the constraints that

the expected fraction of endpoints added by preferential attachment is 󰁥η, and the expected

numbers of new-old edges and old-old edges are 󰁥m and 󰁦M . By Lyapounov’s central limit

theorem,
√
t (󰁨η − 󰁥η) ⇝ N [0,Var (󰁨η)], where the asymptotic variance Var (󰁨η) is given by

Var (󰁨η) =
󰁥mA1(1− A1) +

󰁦M(B1(1− B1) + C1(1− C1))

4(󰁥m+󰁦M)2
.

It is well known that the entropy of a normally distributed random variable increases with its

variance; so maximizing the entropy of 󰁨η is asymptotically equivalent to maximizing Var (󰁨η).
Finally, it is straightforward to show that our choice of (A1, B1, C1) maximizes Var (󰁨η) subject
to (󰁥mA1 +

󰁦M(B1 + C1))/2(󰁥m+󰁦M) = 󰁥η.
If the conditions of Proposition 7 hold, then the GMM estimator with 󰁦W P→ Σ−1 is asymp-

totically efficient (see Newey and McFadden, 1994, Theorem 5.2), but only in the class of

GMM estimators with the moment function vector g(d;θ) =
󰀃
∇θ lnP (d;θ), d− 2(m+M)

󰀄′
.

As a consistent estimator of Σ is not readily available, we also consider the unweighted GMM

estimator with 󰁦W equal to the identity matrix I. Simulations suggest that the GMM esti-

mators with 󰁦W = I and 󰁦W P→ Σ−1 have a similar bias and variance.

17In the next section we demonstrate by simulations that this procedure performs better than a procedure

disregarding vertex degree interdependences.
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4 Simulations and Application

4.1 Simulation Studies

We investigate the finite sample performance of the PML, plug-in PMLP, unweighted GMMU,

and optimal GMMO estimators (jointly referred to as the PML-GMM estimators in this

section) and compare it to that of the popular NLS and Hill estimators.18 The weighting

matrix for the GMMO estimator is 󰁦W = 󰁥Σ−1, where 󰁥Σ, the sample variance-covariance

matrix of the moments, is computed from 100000 replications of the network.

We report the two best performing variants of the NLS estimator: NLSD, in which observed

distinct degrees and the corresponding empirical distributions are used as observations, and

NLSR, in which all observed degrees with repetitions and the corresponding ordinal ranks are

used as observations.

The performance of the Hill estimator heavily depends on the selection of the tail cutoff d†t .

Here, we report the Hill estimator based on a popular selection method in which d†t minimizes

the asymptotic mean squared error of the estimator (see Beirlant et al., 1996; Matthys and

Beirlant, 2000, and the Supplementary Appendix for more details).

The performance of the estimators for the CF model is compared in terms of their bias

and standard deviation. In order to support our estimation procedure for the variance,

we compute the sample standard deviations of the estimators using (i) the model with the

true parameters, SD, (ii) the model where the nuisance parameters are replaced with the

values set to maximize the entropy, SDE,
19 and (iii) the model where degrees are sampled

independently directly from the asymptotic degree distribution, SDI. We also report the

Kolmogorov-Smirnov (KS) statistic to assess the closeness to the normal distribution. All

simulation results are based on 10000 replications.

As a benchmark, we consider the CF model with the following parameters: t = 1000,

18The NLS estimator for the CF model is formally derived and various implementations are explained in the

Supplementary Appendix. This section reports the results for the Hill estimator, which turns out to be among

the best performing tail estimators. The Supplementary Appendix includes an extensive comparison with

other popular tail estimators including the discrete maximum likelihood tail estimator (Goldstein et al., 2004),

the Hill estimator with continuity correction (Clauset et al., 2009), the log-log rank-degree regression with

continuity correction (Gabaix and Ibragimov, 2011), the Pickands (1975) estimator, the Dekkers et al. (1989)

moment estimator, and the Smith (1987) maximum likelihood estimator of the Paretian excesses model. We

also compare different methods for selecting the tail cutoff. We provide Matlab codes for all these estimators.
19In particular, the values of the nuisance parameters, which are not identified from the asymptotic de-

gree distribution P (d;θ), are set to qM = γ(1 − γ)M for M ∈ {0, 1, . . . }, where γ = (M + 1)−1; and

A1 = B1 = C1 = 2η(m+M)/(2M +m).
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Table 1: Comparison of various estimators for t = 1000

PML PMLP GMMU GMMO NLSD NLSR HillMS

Bias(η) 0.0009 0.0007 0.0007 0.0007 0.0436 0.0374 0.0816

SD(η) 0.0250 0.0169 0.0167 0.0167 0.0467 0.0176 0.0606

SDE(η) 0.0312 0.0220 0.0218 0.0218 0.0556 0.0222 0.0639

SDI(η) 0.0487 0.0526 0.0529 0.0529 0.0805 0.0558 0.1336

KS(η) 0.0083 0.0071 0.0068 0.0070 0.0235 0.0187 0.0216

Bias(M) 0.0019 0.0001 0.0001 0.0001

SD(M) 0.0418 0.0157 0.0157 0.0157

SDE(M) 0.0762 0.0605 0.0605 0.0605

SDI(M) 0.1378 0.1654 0.1653 0.1654

KS(M) 0.0157 0.0190 0.0138 0.0136

p0 = 1 (m(t) = 0), q1 = q2 = 0.5 (M = 1.5), and A1 = B1 = C1 = 0.5 (η = 0.5). As in

Bollobas et al. (2001), we assume that the initial graph, G(1), consists of one vertex and a

random number max{m(1) + M(1), 1} of loops.20 In this benchmark, we assume that it is

known that P = 0.

Table 1 reports the results for the benchmark specification. For parameter η, the PML-

GMM estimators show a substantially lower bias and standard deviation relative to the NLS

and Hill estimators, with the exception that the NLSR estimator has a comparable standard

deviation to that of the PML-GMM estimators. Among the PML-GMM estimators, the plug-

in PML, unweighted GMM, and optimal GMM estimators are very similar in performance.

They are closely followed by the PML estimator. Based on our analysis, we recommend us-

ing the plug-in PML estimator due to its strong performance and simpler implementation.

As anticipated, the maximum entropy approach produces conservative standard deviations,

which are higher than those based on the true nuisance parameters. Moreover, the stan-

dard deviations are more accurately estimated based on the assumption that the nuisance

parameters are set to maximize the entropy rather than the assumption that the degrees are

independently identically distributed according to the asymptotic degree distribution. Fi-

nally, the KS statistics suggest that the distribution of the PML-GMM estimators is closer

to the normal distribution compared to the distribution of the NLS and Hill estimators.

20As a robustness check, we have also considered different initial graphs and different parameter values,

some of which are reported in the Supplementary Appendix. The qualitative comparison of the estimators

remains the same.
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Table 2: Absolute bias and (standard deviation) of 󰁥η for various t

t PML PMLP GMMU NLSD NLSR Hill

1000 0.0009 0.0007 0.0007 0.0436 0.0374 0.0816

(0.0250) (0.0169) (0.0167) (0.0467) (0.0176) (0.0606)

10000 0.0001 0.0001 0.0001 0.0405 0.0386 0.0365

(0.0080) (0.0054) (0.0053) (0.0149) (0.0052) (0.0347)

100000 0.0001 0.0000 0.0000 0.0335 0.0394 0.0187

(0.0026) (0.0017) (0.0017) (0.0055) (0.0016) (0.0199)

Table 2 illustrates how the absolute bias and standard deviation of the estimators change

with the network size t. The bias of the PML-GMM estimators is small relative to the bias

of the NLS and Hill estimators. While the bias of the PML-GMM and Hill estimators tends

to vanish as t becomes very large, the bias of the NLS estimator persists. The results agree

with formally established consistency of the PML-GMM and Hill estimators. The standard

deviation of the PML-GMM and NLSR estimators appears to decrease at the
√
t-rate, while

the standard deviation of the NLSD and Hill estimators appears to decrease at a slower rate.

Next, we investigate the performance of the plug-in PML estimator in the case of over-

specification, when the assumed order P is larger than the actual P , and in the case of

misspecification, when the assumed P is smaller than the actual P . Table 3 reports the

results for the true model with P = 1 and p0 = p1 = 0.5, and with the other parameters

being as in the benchmark. The assumed order of the plug-in PML estimator is indicated

by superscript P . The bias and standard deviation of the plug-in PML estimator are higher

under overspecification, P = 2, than under the correct specification, P = 1, but they are still

smaller than those of the NLS and Hill estimators. However, under misspecification, P = 0,

the plug-in PML estimator has a substantial bias which is higher than the bias of the NLS and

Hill estimators. In this sense, the plug-in PML estimator is not robust to misspecification. In

practice, we may use model selection procedures, such as the BIC, to find an optimal order.

The smallest value of the BIC is attained under the correctly specified model. The other

PML-GMM estimators perform similarly to the plug-in PML estimator.

4.2 Empirical Application

We illustrate the applicability of the introduced methods by estimating the CF model for the

network of co-authorship relations among economists publishing in journals listed by EconLit

in the 1990s. This dataset was first considered by Goyal et al. (2006), who constructed a
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Table 3: Overspecification and misspecification for p0 = p1 = 0.5 (P = 1)

PMLP=1
P PMLP=2

P PMLP=0
P NLSD NLSR Hill

Bias(η) 0.0006 0.0100 0.1593 -0.0302 -0.0221 0.0721

SD(η) 0.0203 0.0214 0.0163 0.0488 0.0187 0.0543

SDE(η) 0.0244 0.0260 0.0207 0.0594 0.0241 0.0603

Bias(M) 0.0002 0.0404 0.4999

SD(M) 0.0410 0.0664 0.0223

SDE(M) 0.0722 0.0912 0.0630

Bias(p0) 0.0001 0.0151

SD(p0) 0.0411 0.0436

SDE(p0) 0.0418 0.0452

BIC 4714.9 4721.3 4781.5

network of collaborations in which every publishing author is represented by a vertex, and two

authors are connected if they have published at least one paper together in the period of ten

years from 1990 and 1999. The network contains t = 81217 authors with the average number

of co-authors equal to 1.672 (i.e., 󰁦m+M = 0.836). Jackson and Rogers (2007) estimated the

tail parameter of the degree distribution for this network using the NLS estimator.

Since the support of m(t) is not known, we consider various values of P . The models

with P = 1 and P = 2 are close in terms of the BIC. We select the model with P = 1,

which produces a closer fit to the empirical degree distribution in the tails. The conservative

standard errors are computed with 1000 parametric bootstrap replications using the maximum

entropy approach introduced in Section 3.4.

Table 4 shows the parameter estimates and their conservative standard errors for the co-

authorship network.21 For the Hill estimator, the tail cutoff that minimizes the asymptotic

mean squared error is d†t = 26. The PML-GMM estimators estimate η to be about 0.21, while

the Hill and NLS estimators produce a wide range of estimates from 0.18 to 0.22.22 The Hill

estimator produces a better fit to the empirical distribution in the extreme tails, while the

PML-GMM and NLS estimators give a better overall fit.

One of the advantages of the PML-GMM estimators, relative to the Hill and NLS estima-

tors, is that they allow for structural estimation of the CF model; so we can obtain additional

21Since the optimal weighting matrix W is difficult to estimate and given the strong performance of the

unweighted GMM estimator in the simulations, we do not consider the optimal GMM estimator in the

application.
22These values are similar to the NLS estimate of 1/η = 4.7 in Jackson and Rogers (2007).
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Table 4: Parameter estimates and their standard errors for the co-authorship network

PML PMLP GMMU NLSD NLSR Hill

󰁥η 0.2120 0.2127 0.2126 0.1818 0.2242 0.1814

SE(η) 0.0039 0.0038 0.0039 0.0089 0.0029 0.0422

󰁦M 0.4049 0.4062 0.4062

SE(M) 0.0047 0.0050 0.0048

󰁥p0 0.5706 0.5703 0.5709

SE(p0) 0.0043 0.0044 0.0044

insights about the network formation process. The structural estimates suggest that the net-

work is formed by an approximately equal number of new-old connections (m = 0.43) and

old-old connections (M = 0.41). Moreover, a slight majority of new vertices, about 57%, have

no initial edges (single-authored papers) and 43% of the new vertices have one initial edge

(co-authored papers with one co-author). We also find that about 21% of connections are

formed by preferential attachment. The preferential attachment mechanism seems natural in

this setting as better known authors are more likely to attract new co-authors and, in this

way, grow their network of collaborations.

5 Conclusion

We estimate a general model of scale-free network formation using the PML, GMM, NLS,

and Hill estimators. By establishing the laws of large numbers for the CF model, we prove

consistency of the PML, GMM, and Hill estimators. We also discuss asymptotic normality

and conservative variance estimation of these estimators. Our simulations indicate that the

PML and GMM estimators have virtually no bias and a smaller variance than the NLS and

Hill estimators. We recommend using the plug-in PML estimator as it has comparable finite

sample performance and is simpler in its implementation relative to the GMM estimators.

Our theoretical results are useful for a growing literature on estimation of network for-

mation models. The methodology for establishing the laws of large numbers and consistency

of various estimators can be extended to other growing network models. One of the main

challenges with growing network models is that the vertex degrees have non-standard inter-

dependencies. We hope that future research will better characterize these interdependencies,

which, in turn, will help to prove asymptotic normality and find the asymptotic variance of

the introduced PML and GMM estimators.
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We focus entirely on the degree distribution in this paper. While this is one of the most

important network characteristics, there are other characteristics such as clustering, assorta-

tivity, and average distance. Extending the model to include these additional characteristics

and developing appropriate estimators are important directions for future research.

Appendix A: Degree Distribution of CF model

Following Cooper (2006), define d∗t (η) as d∗t (η) = min{tη/3, t1/6/ ln2 t} and nm(d; η,κ) for

d ∈ {m,m+ 1, . . . } as

nm(d; η,κ) =
B (d+ κ, 1 + 1/η)

B (m+ κ, 1/η)
=

Γ (m+ κ+ 1/η)

ηΓ (m+ κ)

Γ (d+ κ)

Γ (d+ κ+ 1 + 1/η)
, (1)

where B(x, y) =
󰁕 1

0
wx−1(1− w)y−1dw for x > 0 and y > 0 is the Beta function, and Γ(z) =

󰁕∞
0

wz−1e−wdw for z > 0 is the Gamma function. The second equality in (1) follows from

B(x, y) = Γ(x)Γ(y)/Γ(x + y) and Γ(z + 1) = zΓ(z). Notice that nm(d; η,κ) is a probability

distribution because nm(d; η,κ) > 0 for d ≥ m and
󰁓∞

d=m nm(d; η,κ) = 1.

To present the main result of Cooper (2006), we define Dt(d,m) as the number of vertices

of the graph G(t) with initial degree d(v, v) = m and current degree d(v, t) = d. Following

Cooper (2006), the equations with terms like O (1/ ln t) should be treated as inequalities

giving upper and lower bounds (no explicit functional form is implied). Constants in error

terms like O (1/ ln t) may depend on the parameters of the model but not on d.

Lemma A.1 For m ≤ d ≤ d∗t (η), we have the following:

1. expected degree

EDt(d,m) = pmnm(d; η,κ)t

󰀕
1 +O

󰀕
1

ln t

󰀖󰀖
,

2. concentration

Pr

󰀕
|Dt(d,m)− EDt(d,m)| ≥ EDt(d,m)√

ln t

󰀖
= O

󰀕
1

ln t

󰀖
.

Proof of Lemma A.1. Follows from Cooper (2006, Theorem 2.1).

Since the initial degrees of vertices are not observed in real networks, we need to extend

Lemma A.1 in the following way for our analysis. Denote P (d; η,M,p) =
󰁓min{P,d}

m=0 pmnm(d; η,κ).

Proposition A.1 For 0 ≤ d ≤ d∗t (η), we have the following:

1. expected degree

EDt(d) = P (d; η,M,p)t

󰀕
1 +O

󰀕
1

ln t

󰀖󰀖
,
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2. concentration

Pr

󰀕
|Dt(d)− EDt(d)| ≥

EDt(d)√
ln t

󰀖
= O

󰀕
1

ln t

󰀖
.

Proof of Proposition A.1. Summing up the expressions from part 1 of Lemma A.1 gives

part 1 of Proposition A.1. The following sequence of inequalities establishes part 2:

Pr
󰀓
|Dt(d)− EDt(d)| ≥ EDt(d)√

ln t

󰀔
= Pr

󰀕󰀏󰀏󰀏
󰁓min{P,d}

m=0 (Dt(d,m)− EDt(d,m))
󰀏󰀏󰀏 ≥

󰁓min{P,d}
m=0 EDt(d,m)√

ln t

󰀖

≤ Pr

󰀕󰁓min{P,d}
m=0 |Dt(d,m)− EDt(d,m)| ≥

󰁓min{P,d}
m=0 EDt(d,m)√

ln t

󰀖

≤ Pr
󰀓
∃m : |Dt(d,m)− EDt(d,m)| ≥ EDt(d,m)√

ln t

󰀔

≤
󰁓min{P,d}

m=0 Pr
󰀓
|Dt(d,m)− EDt(d,m)| ≥ EDt(d,m)√

ln t

󰀔
= O

󰀃
1
ln t

󰀄
.

Appendix B: Main Proofs

Proof of Proposition 1. The proof follows from Proposition A.1 and the following

derivations for large t:

Pr
󰀓
|Dt(d)− EDt(d)| ≥ EDt(d)√

ln t

󰀔

= Pr
󰀓󰀏󰀏󰀏Dt(d)

|V (t)| − P (d; η,M,p) t
|V (t)|

󰀃
1 +O

󰀃
1
ln t

󰀄󰀄󰀏󰀏󰀏 ≥ P (d;η,M,p)√
ln t

t
|V (t)|

󰀃
1 +O

󰀃
1
ln t

󰀄󰀄󰀔

= Pr
󰀓󰀏󰀏󰀏Dt(d)

|V (t)| − P (d; η,M,p)
󰀏󰀏󰀏 ≥ P (d; η, ν,p)

󰀓
1√
ln t

+O
󰀃

1
ln t

󰀄󰀔󰀔

≥ Pr
󰀓󰀏󰀏󰀏Dt(d)

|V (t)| − P (d; η,M,p)
󰀏󰀏󰀏 ≥ 2P (d;η,M,p)√

ln t

󰀔
.

Proof of Corollary 1.

Part 1. Note that d∗t (η) → ∞ as t → ∞; so d ≤ d∗t (η) and Proposition 1 applies.

Part 2. Apply the well-known result (see, e.g., Tricomi and Erdélyi, 1951) that Γ(z +

α)/Γ(z + β) = zα−β(1 +O (1/z)) to Γ (d+ κ) /Γ (d+ κ+ 1 + 1/η).

Part 3. Apply Γ(z + 1) = zΓ(z) to nm(d; η,κ) given by (1):

nm(d; η,M,m) =
(d−1−2(m+M)+(m+2M)/η)...(m−2(m+M)+(m+2M)/η)

η(d−2(m+M)+(m+2M+1)/η)...(m−2(m+M)+(m+2M+1)/η)
→
η→0

1
m+2M+1

󰀓
m+2M

m+2M+1

󰀔d−m

.

Proof of Proposition 2.

Part 1. We first prove that Gn
0 (θ) =

󰁓n
d=0 a(d;θ)P (d;θ0) converges uniformly on Θ to

G0(θ). Palumbo (1998) shows that

Γ(z+α)
Γ(z+1)

> (z + 1)α−1 for α > 2 and z ≥ 0.
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Thus, for d ≥ max{1− κ0, P},

P (d;θ0) =
P󰁓

m=0

pm0
Γ(m+κ0+1/η0)
η0Γ(m+κ0)

Γ(d+κ0)
Γ(d+κ0+1+1/η0)

< C(θ0) (d+ κ0)
−1−1/η0 ,

Thus,

󰀂a(d;θ)P (d;θ0)󰀂 < C(θ0) (d+ κ0)
−1−1/η0 Fd = Jd.

Clearly,
󰁓∞

d=0 Jd < ∞. Thus, Gn
0 (θ) converges uniformly on Θ to G0(θ) (Rudin, 1976,

Theorem 7.10). Moreover, since Gn
0 (θ) is continuous on Θ, G0(θ) is also continuous on Θ

(Rudin, 1976, Theorem 7.12).

Part 2. Let d⋄t = [
√
ln t]. Clearly, d⋄t → ∞, d⋄t/d

∗
t (η) → 0, and d⋄t/ ln t → 0 as t → ∞.

We can write
󰀐󰀐󰀐 󰁥Gt(θ)−G0(θ)

󰀐󰀐󰀐 =
󰀐󰀐󰀐
󰁓d⋄t−1

d=0 a(d;θ)
󰀓

Dt(d)
|V (t)| − P (d;θ0)

󰀔
+
󰁓∞

d=d⋄t
a(d;θ)

󰀓
Dt(d)
|V (t)| − P (d;θ0)

󰀔󰀐󰀐󰀐

≤

󰀐󰀐󰀐󰀐󰀐󰀐

∞󰁛

d=d⋄t

a(d;θ)P (d;θ0)

󰀐󰀐󰀐󰀐󰀐󰀐
󰁿 󰁾󰁽 󰂀

󰁥S1(θ)

+

󰀐󰀐󰀐󰀐󰀐󰀐

d⋄t−1󰁛

d=0

a(d;θ)

󰀏󰀏󰀏󰀏
Dt(d)

|V (t)| − P (d;θ0)

󰀏󰀏󰀏󰀏

󰀐󰀐󰀐󰀐󰀐󰀐
󰁿 󰁾󰁽 󰂀

󰁥S2(θ)

+

󰀐󰀐󰀐󰀐󰀐󰀐

∞󰁛

d=d⋄t

a(d;θ)
Dt(d)

|V (t)|

󰀐󰀐󰀐󰀐󰀐󰀐
󰁿 󰁾󰁽 󰂀

󰁥S3(θ)

.

To prove supθ∈Θ

󰀐󰀐󰀐 󰁥Gt(θ)−G0(θ)
󰀐󰀐󰀐 P→ 0, it suffices to show that supθ∈Θ

󰁥S1 (θ)
P→ 0,

supθ∈Θ
󰁥S2 (θ)

P→ 0, and supθ∈Θ
󰁥S3 (θ)

P→ 0.

Because Gn
0 (θ) uniformly converges to G0(θ) on Θ, we have supθ∈Θ

󰁥S1 (θ)
P→ 0.

Proposition 1 implies that there exists N(θ0) such that for 0 ≤ d ≤ d∗t (η0), we have:

Pr
󰀓󰀏󰀏󰀏Dt(d)

|V (t)| − P (d;θ0)
󰀏󰀏󰀏 ≥ 2P (d;θ0)√

ln t

󰀔
≤ N(θ0)

ln t
.

Therefore, by definition of d⋄t , we have

Pr
󰀓
∃d ≤ d⋄t :

󰀏󰀏󰀏Dt(d)
|V (t)| − P (d;θ0)

󰀏󰀏󰀏 ≥ 2P (d;θ0)√
ln t

󰀔
≤ N(θ0)d⋄t

ln t
= O

󰀓
1√
ln t

󰀔
.

Thus, with probability 1−O(1/
√
ln t), which approaches one, we have

󰁥S2 (θ) ≤
󰀐󰀐󰀐2

󰁓d⋄t−1
d=0 a(d;θ)P (d;θ0)√

ln t

󰀐󰀐󰀐 < C1
󰀂G0(θ)󰀂√

ln t
(2)

for some C1. The last inequality follows from the uniform convergence of Gn
0 (θ) on Θ. Since

G0(θ) is continuous on a compact set Θ, 󰀂G0(θ)󰀂 is bounded on Θ; so supθ∈Θ
󰁥S2 (θ)

P→ 0.

Since 󰀂a(d;θ)󰀂 < Fd, showing
󰁓∞

d=d⋄t
dDt(d)/|V (t)| P→ 0 is sufficient for supθ∈Θ

󰁥S3 (θ)
P→ 0.

Using the definition of nm(d; η,κ) and the property B(x+1, y) = B(x, y)x/(x+y), we can rep-

resent
󰁓∞

d=m dnm(d; η,κ) as the composition of an infinite geometric series and its derivative,

which simplifies to
󰁓∞

d=m dnm(d; η,κ) =
κη+m
1−η

.
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Next, using the definition of P (d;θ) and κ, we obtain

󰁓∞
d=0 dP (d;θ) =

󰁓P
m=0 pm

󰁓∞
d=m dnm(d; η,κ) = 2

󰀃
m+M

󰀄
. (3)

Since m (t) +M (t) are i.i.d. with a finite variance, the law of large numbers implies

󰁓∞
d=0 d

Dt(d)
|V (t)|

P→ 2(m0 +M0) =
󰁓∞

d=0 dP (d;θ0), (4)

where the equality follows from (3). Using (2) and part 1 of this proposition, we get

󰁓d⋄t−1
d=0 dDt(d)

|V (t)| =
󰀓󰁓d⋄t−1

d=0 dP (d;θ0)
󰀔󰀓

1 +OP

󰀓
1√
ln t

󰀔󰀔
P→

󰁓∞
d=0 dP (d;θ0). (5)

Combining (4) and (5) gives

󰁓∞
d=d⋄t

dDt(d)
|V (t)| =

󰁓∞
d=0 d

Dt(d)
|V (t)| −

󰁓d⋄t−1
d=0 dDt(d)

|V (t)|
P→ 0,

which completes the proof of supθ∈Θ
󰁥S3 (θ)

P→ 0.

Proof of Proposition 3. Let d⋄t = [(ln t)(1+η0)/2]. Clearly, d⋄t/d
∗
t (η0) → 0 and d⋄t/ ln t → 0

as t → ∞. Next, we show that d⋄t/[xF
−1

(kt/t)] → ∞ as t → ∞. To this end, since P (d;θ0)

is decreasing in d, we can write the following summation-integration inequalities
󰁝 ∞

z+1

P (s;θ0)ds ≤ F (z) ≤
󰁝 ∞

z

P (s;θ0)ds.

Combining these inequalities with part 2 of Corollary 1, we obtain

F (z) = η0C(θ0)z
−1/η0

󰀕
1 +O

󰀕
1

z

󰀖󰀖
. (6)

Inverting F (z) yields

F
−1
(y) =

󰀕
y

η0C(θ0)

󰀖−η0

(1 +O (yη0)) . (7)

Therefore,

lim
t→∞

d⋄t

[xF
−1

(kt/t)]
= lim

t→∞

(ln t)(1+η0)/2

x(η0C(θ0)t/kt)η0
=

1

x(η0C(θ0))η0
lim
t→∞

√
ln t

(kt
√
ln t/t)−η0

= ∞,

where the first equality holds by (7) and definition of d⋄t , the second by rearrangement, and

the last by requirements η0 ∈ (0, 1) and kt
√
ln t/t → ∞.

We can write

1
kt

∞󰁓

d=[xF
−1

(kt/t)]

Dt(d) =
|V (t)|
kt

d⋄t−1󰁛

d=[xF
−1

(kt/t)]

Dt(d)

|V (t)|
󰁿 󰁾󰁽 󰂀

󰁥H1

+
|V (t)|
kt

∞󰁛

d=d⋄t

Dt(d)

|V (t)|
󰁿 󰁾󰁽 󰂀

󰁥H2

.
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To prove the proposition, it suffices to show that 󰁥H1
P→ x−1/η0 and 󰁥H2

P→ 0.

Proposition 1 implies that there exists N(θ0) such that for 0 ≤ d ≤ d∗t (η0), we have:

Pr
󰀓󰀏󰀏󰀏Dt(d)

|V (t)| − P (d;θ0)
󰀏󰀏󰀏 ≥ 2P (d;θ0)√

ln t

󰀔
≤ N(θ0)

ln t
.

Therefore, by definition of d⋄t , we have

Pr
󰀓
∃d ≤ d⋄t :

󰀏󰀏󰀏Dt(d)
|V (t)| − P (d;θ0)

󰀏󰀏󰀏 ≥ 2P (d;θ0)√
ln t

󰀔
≤ N(θ0)d⋄t

ln t
= O

󰀓
(ln t)−

1−η0
2

󰀔
.

Thus, with probability 1−O
󰀃
(ln t)−(1−η0)/2

󰀄
, which approaches one, we have

|V (t)|
kt

d⋄t−1󰁓

d=[xF
−1

(k/t)]

󰀓
Dt(d)
|V (t)| − P (d;θ0)

󰀔
≤ 2 |V (t)|

kt

F ([xF
−1

(kt/t)])√
ln t

= 2x−1/η0√
ln t

󰀃
1 +O

󰀃󰀃
kt
t

󰀄η0󰀄󰀄
, (8)

where the equality follows from (6) and (7). Notice that

|V (t)|
kt

d⋄t−1󰁓

d=[xF
−1

(kt/t)]

P (d;θ0) =
|V (t)|
kt

F
󰀓
[xF

−1
(kt/t)]

󰀔
− |V (t)|

kt
F (d⋄t ) → x−1/η0 , (9)

where the first term converges to x−1/η0 by (6) and (7) and the second term to 0 by

t

kt

󰀃
(ln t)(1+η0)/2

󰀄−1/η0
=

(ln t)−1/2η0

kt
√
ln t/t

→ 0. (10)

Combining (8) and (9) gives 󰁥H1
P→ x−1/η0 .

With probability 1−O
󰀃
(ln t)−(1−η0)/2

󰀄
, which approaches one, we have

󰁥H2 =
|V (t)|
kt

󰀳

󰁃1−
d⋄t−1󰁛

d=0

Dt(d)

|V (t)|

󰀴

󰁄 ≤ |V (t)|
kt

F (d⋄t ) +
|V (t)|
kt

2√
ln t

→ 0,

where the first term converges to 0 by (10) and the second term to 0 by kt
√
ln t/t → ∞.

Proof of Proposition 4. Denote η = minθ∈Θ η and κ = maxθ∈Θ κ. Palumbo (1998) shows

that
Γ(z+α)
Γ(z+1)

<
󰀃
z + α

2

󰀄α−1
for α > 2 and z ≥ 0.

Thus, for d ≥ P ,

|lnP (d;θ)| = − lnP (d;θ) ≤ ln
󰀓

Γ(d+κ+1/η+1)
CΓ(d+κ)

󰀔
< − lnC +

󰀃
1 + 1/η

󰀄
ln
󰀃
d+ κ+ 1/(2η)

󰀄
,

where C = minθ∈Θ C(θ) > 0. Thus, there is F such that |lnP (d;θ)| < Fd for all d ∈ N+

and all θ ∈ Θ, so Proposition 2 applies, meaning that supθ∈Θ

󰀏󰀏󰀏󰁥Lt(θ)− L0(θ)
󰀏󰀏󰀏 P→ 0, where

L0(θ) =
󰁓∞

d=0 lnP (d;θ)P (d;θ0) is a continuous function.
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L0(θ) is uniquely maximized at θ0 by information inequality. Indeed, it is clear that
󰁓∞

d=0 |lnP (d;θ)|P (d;θ0) = −L0(θ) < ∞ for all θ ∈ Θ. Moreover, if θ ∕= θ0, then there

exists d such that P (d;θ) ∕= P (d;θ0) and thus by the strict version of Jensen’s inequality:

L0(θ0)− L0(θ) = −
󰁓∞

d=0 ln
P (d;θ)
P (d;θ0)

P (d;θ0) > − ln
󰀓󰁓∞

d=0
P (d;θ)
P (d;θ0)

P (d;θ0)
󰀔
= 0. (11)

Thus, if 󰁥Lt(󰁥θ) ≥ maxθ∈Θ
󰁥Lt(θ)+oP (1), then all conditions of Newey and McFadden (1994,

Theorem 2.1) are satisfied and thus 󰁥θ P→ θ0. By definition, 󰁥Lt(󰁥θ
PML

) = maxθ∈Θ
󰁥Lt(θ); so

󰁥θ
PML P→ θ0. To solve for 󰁥θ

PML

P , we substitute (m + M) = ( 󰁦m+M) in 󰁥Lt(.) and maximize

󰁥Lt(η,
󰁦M,p) over η and p, where 󰁦M = ( 󰁦m+M) − m. Since 󰁦M is continuous, ( 󰁦m+M)

P→
(m0 + M0), and 󰁥Lt(θ) uniformly converges to a continuous function L0(θ), it follows that

󰁥Lt(󰁥θ
PML

P ) ≥ 󰁥Lt(󰁥ηPML,󰁦M, 󰁥pPML) = 󰁥Lt(󰁥θ
PML

) + oP (1), which implies that 󰁥θ
PML

P
P→ θ0.

Proof of Proposition 5.

Part 1. See the proof of Newey and McFadden (1994, Theorem 2.6) and replace Lemma 2.4

with our Proposition 2 in the argument.

Part 2. The moment function has zero mean:
󰁓∞

d=0

󰀃
d− 2(m0 +M0)

󰀄
P (d;θ0) = 0 by

(3) and
󰁓∞

d=0 (∇θ lnP (d;θ0))P (d;θ0) = 0 by (11) and the interchangeability of summation

and differentiation, which follows from Rudin (1976, Theorems 7.10 and 7.17). We now verify

conditions of part 1 to make sure that 󰁥θ P→ θ0. Condition (iii), clearly, holds. To verify

condition (iv), it is convenient to use the following representation for d ≥ P

lnP (d;θ) = lnΓ (d+ κ)− lnΓ (d+ κ+ 1/η + 1) + ln

󰀣
P󰁛

m=0

pm
Γ (m+ κ+ 1/η)

ηΓ (m+ κ)

󰀤

󰁿 󰁾󰁽 󰂀
R(θ)

, (12)

where R(θ) collects all terms independent of d. Let Rx(θ) denote a partial derivative of R(θ)

with respect to x.

The score function s(d;θ) = ∇θ lnP (d;θ) can be written as

sη(d;θ) = −m+ 2M

η2
ψ (d+ κ) +

m+ 2M + 1

η2
ψ (d+ κ+ 1 + 1/η) +Rη(θ)

sM(d;θ) = 2

󰀕
1

η
− 1

󰀖󰀓
ψ (d+ κ)− ψ (d+ κ+ 1 + 1/η)

󰀔
+RM(θ),

spm(d;θ) = m

󰀕
1

η
− 2

󰀖󰀓
ψ (d+ κ)− ψ (d+ κ+ 1 + 1/η)

󰀔
+Rpm(θ),

where ψ(z) = d lnΓ(z)/dz is a polygamma function. Qi et al. (2005) show that for x > 0:

1

2x
− 1

12x2
< ψ (x+ 1)− ln x <

1

2x
,

26



which implies that there is F such that 󰀂g(d;θ)󰀂 < Fd for all d ∈ N+ and all θ ∈ Θ; so

condition (iv) of part 1 holds, and thus 󰁥θ P→ θ0.

Proof of Proposition 6. By Proposition 3, condition (2.1) of Resnick and Stărică (1995)

holds and their Proposition 2.4 implies that 󰁥ηHill P→ η0.

Proof of Proposition 7. To prove Proposition 7, we notice that all conditions, except

for condition (iv), of Newey and McFadden (1994, Theorem 3.2) are satisfied by assumption.

Thus, we only need to check condition (iv) that for compact set Θ such that θ0 ∈ Θ ⊂ Θ,

we have supθ∈Θ 󰀂
󰁓∞

d=0 ∇θg(d;θ0)Dt(d)/|V (t)|−G(θ)󰀂 P→ 0.

Denote G(d;θ) = ∇θg(d;θ) and recall that θ = (η,M,p). The last row of G(d;θ) is:

∇θ

󰀃
d− 2(M +m)

󰀄
=

󰀓
0 −2 0 . . . −2m . . .

󰀔
.

Next, we calculate h(d;θ) = ∇θθ lnP (d;θ) for d ≥ P :

hηη(d;θ) =
2(m+ 2M)

η3
ψ (d+ κ)− 2(m+ 2M + 1)

η3
ψ (d+ κ+ 1 + 1/η)

+
(m+ 2M)2

η4
ψ(1) (d+ κ)− (m+ 2M + 1)2

η4
ψ(1) (d+ κ+ 1 + 1/η) +Rηη(θ),

hηM(d;θ) = − 2

η2
󰀃
ψ (d+ κ)− ψ (d+ κ+ 1 + 1/η)

󰀄
+ 2

󰀕
1

η
− 1

󰀖
·

󰀕
−m+ 2M

η2
ψ(1) (d+ κ) +

m+ 2M + 1

η2
ψ(1) (d+ κ+ 1 + 1/η)

󰀖
+RηM(θ),

hηpm(d;θ) = −m

η2
󰀃
ψ (d+ κ)− ψ (d+ κ+ 1 + 1/η)

󰀄
+m

󰀕
1

η
− 2

󰀖
·

󰀕
−m+ 2M

η2
ψ(1) (d+ κ) +

m+ 2M + 1

η2
ψ(1) (d+ κ+ 1 + 1/η)

󰀖
+Rηpm(θ),

hMM(d;θ) = 4

󰀕
1

η
− 1

󰀖2 󰀃
ψ(1) (d+ κ)− ψ(1) (d+ κ+ 1 + 1/η)

󰀄
+RMM(θ),

hMpm
(d;θ) = 2m

󰀕
1

η
− 1

󰀖󰀕
1

η
− 2

󰀖󰀃
ψ(1) (d+ κ)− ψ(1) (d+ κ+ 1 + 1/η)

󰀄
+RMpm

(θ),

hpmpm′ (d;θ) = m′m

󰀕
1

η
− 2

󰀖2 󰀃
ψ(1) (d+ κ)− ψ(1) (d+ κ+ 1 + 1/η)

󰀄
+Rpmpm′ (θ),

where Rxy(θ) is a second-order partial derivative of R(θ) given in (12) with respect to x

and y, and ψ(1)(z) = d2 lnΓ(z)/dz2 is the Polygamma function of order 1.

Qi et al. (2005) shows that for x > 0

1

2x
− 1

12x2
< ψ (x+ 1)− ln x <

1

2x
,

1

2x2
− 1

6x3
<

1

x
− ψ(1) (x+ 1) <

1

2x2
− 1

6x3
+

1

30x5
,
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which implies that there is F such that 󰀂G(d;θ)󰀂 < Fd for all d ∈ N+ and all θ ∈ Θ. In

addition, G(d;θ) is continuous; so Proposition 2 applies.

Therefore, condition (iv) of Theorem 3.2 in Newey and McFadden (1994) holds, and

G(θ) =
∞󰁛

d=0

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

hηη(d;θ) hηM(d;θ) hηp0(d;θ) ...

hηM(d;θ) hMM(d;θ) hMp0
(d;θ) ...

hηp0(d;θ) hMp0
(d;θ) hp0p0(d;θ) ...

... ... ... ...

0 −2 0 ...

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

P (d;θ0).

Notice that we interchange the order of summation and differentiation using Rudin (1976,

Theorems 7.10 and 7.17).
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