
Supplementary Appendix for

Estimation of a Scale-Free Network Formation Model

Anton Kolotilin and Valentyn Panchenko

June, 2018

1 NLS Estimator

In Section 2, we derived the asymptotic degree distribution P (d). Below, we approximate

the asymptotic degree distribution of the CF model using an alternative method: mean-field

approximation. The NLS estimator discussed below is based on the mean-field approximation

of the asymptotic degree distribution.

1.1 Mean-Field Approximation of the Degree Distribution

Using the mean-field method of Barabasi and Albert (1999), we approximate the CF network

formation process by a continuous time process such that

dE (d(v, t))

dt
=

(
mA1 +M(B1 + C1)

)
E (d(v, t))

2E|E(t− 1)|
+
mA2 +M(B2 + C2)

E|V (t− 1)|

=

(
mA1 +M(B1 + C1)

)
E (d(v, t))

2(m+M)(t− 1)
+
mA2 +M(B2 + C2)

t− 1
,

where mA1+M(B1+C1) and mA2+M(B2+C2) are the expected numbers of edge endpoints

added at time t by preferential attachment and uniformly at random, respectively.

As t→∞, the differential equation asymptotes to

dE (d(v, t))

dt
=
ηE (d(v, t))

t
+
ηκ

t
,

where ηκ is the expected number of edge endpoints added uniformly at random per vertex.

The solution to this differential equation is:

φmt (v) = E (d(v, t)) = (m(v) + κ)

(
t

v

)η
− κ,
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where m(v) is the degree of a newly added vertex at time v. The function φmt (v) is de-

creasing in v, which means that given an initial degree, vertices added at an earlier time

period (“older” vertices) have a larger expected degree than vertices added at later periods

(“younger” vertices). Thus, the cumulative distribution of expected degrees of vertices with

the initial degree m can be approximated by (for d ≥ m):

Fm
t (d) =

pm|{i : φmt (i) ≤ d}|
pmt

= 1− φ
m(−1)
t (d)

t
= 1− (m+ κ)

1
η (d+ κ)−

1
η .

Thus, the cumulative distribution of expected degrees of graph G(t) can be approximated by:

FMF(d) =

min{P,d}∑
m=0

pmF
m
t (d). (1)

For a sufficiently large d and a constant K, the complementary cumulative distribution can

be approximated by a power-law distribution:

1− F tail(d) = Cd−1/η.

This result is analogous to part 2 of Corollary 1 in Section 2.2, which shows that the asymp-

totic degree distribution P (d) has a power-law tail.

Now we can connect various approximations of the degree distribution to specific esti-

mators: the PML and GMM estimators are derived from the asymptotic degree distribution

P (d), the NLS estimator is derived from the mean-field approximation, and the Hill estimator

and other tail estimators are based on the power-law approximation in the tail.

Figure 1 compares the cumulative distributions (left panel, linear scale) and the com-

plementary cumulative distributions (right panel, log scale) for the benchmark specification:

t = 1000, p0 = 1 (m(t) = 0), q1 = q2 = 0.5 (M = 1.5), and A1 = B1 = C1 = 0.5

(η = 0.5). The empirical cumulative distribution from a simulated network is much closer to

the asymptotic approximation than to the mean-field and tail approximations, especially for

small degrees d. This may explain inferior performance of the estimators based on the latter

two approximations.

1.2 NLS Estimator

We now turn to the NLS estimator commonly used for scale-free network formation models

(see Pennock et al., 2002; Jackson and Rogers, 2007; Jackson, 2008).
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Figure 1: Degree distributions for a simulation of the CF model
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In order to derive the NLS estimator, we need to fix m, that is, assume that m(t) = m.1

Since most of the real networks have vertices with zero degree, we set m(t) = 0. Under this

assumption, (1) can be expressed as

ln(1− FMF(d)) = 1/η
(
ln
(
2M(1/η − 1)

)
− ln

(
d+ 2M(1/η − 1)

))
.

Moreover, M can be consistently estimated as2

M̂ =
1

2

∞∑
d=0

d
Dt(d)

t
.

Parameter η is then estimated by numerically minimizing the quadratic loss:

η̂NLS = arg min
η

∞∑
d=0

(
ln(1− F̂t(d))− 1/η

(
ln(2M̂(1/η − 1))− ln(d+ 2M̂(1/η − 1))

))2
,

where F̂t(d) is an empirical analogue of the cumulative distribution.

There are several alternatives of what can be used as degree observations for the NLS

estimator: (i) observed distinct degrees (without repetition), (ii) consecutive degrees in the

range [dmin, dmax] where dmin = minv d(v, t) and dmax = maxv d(v, t),3 and (iii) observed degrees

with repetition (Newman, 2005, Appendix A).

1Note that Pennock et al. (2002) assume m(t) = 0 and M(t) = M for some constant M , whereas Jackson

(2008) and Jackson and Rogers (2007) assume m(t) = m and M(t) = 0 for some constant m.
2Hereafter, we assume |V (t)| = t for notational simplicity.
3Our reconstruction suggests that this method in conjunction with the empirical cumulative distribution

for F̂t(d) and removed dmax is used in Jackson (2008).
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F̂t(d) can also be specified in several ways. The empirical cumulative distribution is a

common candidate, F̂t(d) =
∑d

i=0Dt(i)/t. But, in this case, F̂t (dmax) = 1, and hence,

ln(1−F̂t(dmax)) is not defined. One way to overcome this issue is to remove the observation(s)

with d = dmax. Alternatively, F̂t(d) can be scaled with 1/(t + 1) instead of 1/t (see, e.g.,

Beirlant et al., 2006, p. 5). Moreover, when the observed degrees with repetition are used,

1− F̂t can be specified as ordinal ranks (scaled by 1/t) (see, Newman, 2005, Appendix A). In

this case, each observation (vertex) is assigned a distinct ordinal number from 1 to t according

to its degree d in descending order. Hence, F̂t changes in discrete steps of 1/t. Gabaix and

Ibragimov (2011) advocate using rank− 1/2 adjustment for improved performance.

The NLS estimators based on the above definitions and adjustments are compared in the

Excel spreadsheet of this Supplement. It appears that using (i) observed distinct degrees

and (ii) observed degrees with repetition in conjunction with removed dmax yield the best

performance. These estimators are reported in the main text of the paper as (i) NLSD and

(ii) NLSR.

2 Tail Estimators

There is a well-developed literature on tail estimators, starting from Hill (1975), Pickands

(1975), and Smith (1987); see Beirlant et al. (2006) for a detailed analysis and references.

These estimators rely on a specific behavior in the tail of the distribution. Since the CF

model yields a degree distribution with a power-law tail, tail estimators based on Pareto-type

models are appropriate for estimating parameter η, which determines power-law parameter

1+1/η. Most tail estimators are designed for continuous independently identically distributed

random variables, but degrees in the CF model are discrete valued, interdependent, and not

identically distributed. Moreover, an appropriate choice of the number of observations in

the tail, called a tail cutoff, d†t , after which the tail approximation holds, is crucial for these

estimators. We will first assume that d†t is known and then, after introducing the estimators,

we will discuss various methods for selecting d†t .

2.1 Pareto-Type Distribution

A simple and popular way to estimate the power-law parameter is to run a rank-degree

regression in logs. Specifically, denote increasingly ordered degree observations by d1 ≤
· · · ≤ dt. The regression is ln j = c − 1

η
ln dt−j+1 for j such that dt−j+1 > d†t . Gabaix and

Ibragimov (2011) propose an important simple bias-reducing adjustment. They recommend
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using ln(j − 1/2) instead of ln j in the regression. We implement this estimator and refer to

it as the GI estimator.

Hill (1975) estimator is the main tail estimator. It can be derived as a maximum likelihood

estimator based on the two assumptions: (i) the tail of the distribution follows continuous

Pareto distribution with density f(d) = 1

ηd†t

(
d

d†t

)−1−1/η
conditional on d > d†t , and (ii) these

tail observations are independent,4

η̂Hill =
1

kt

∑
v:d(v,t)>d†t

ln
d(v, t)

d†t
=

1

kt

∞∑
d=d†t+1

Dt(d) ln
d

d†t
,

where kt =
∑∞

d=d†t+1
Dt(d) is the number of vertices that have degree greater than d†t .

For a discrete distribution, Clauset et al. (2009) propose a simple adjustment for the Hill

estimator,

η̂Hill
C =

1

kt

∞∑
d=d†t+1

Dt(d) ln
d

d†t + 1/2
.

The discrete counterpart of the Pareto distribution is zeta distribution. Assuming the

zeta distribution for the tail, the probability that a vertex has degree d, for d > d†t , is

P (d) =
d−1−1/η

ζ(1 + 1/η, d†t + 1)
,

where ζ(1 + 1/η, d†t + 1) =
∑∞

i=0(i + d†t + 1)−(1+1/η) is the Hurwitz zeta function. Goldstein

et al. (2004) and Bauke (2007) use a maximum likelihood tail estimator for discrete data,

η̂Hill
G = argmax

η
−1 + 1/η

kt

∞∑
d=d†t+1

Dt(d) ln d− ln ζ(1 + 1/η, d†t + 1).

2.2 Other Distributions

The Hill estimator, together with its variants discussed above, is applicable for estimating

the tail of Pareto-type distributions, and thus of the degree distribution of the CF model.

We now introduce other tail estimators applicable for estimating the tails of distributions

belonging to the Pareto, Weibull, and Gumbel classes.

Pickands (1975) proposes a tail estimator which is based on sample quantiles in the tails,

η̂Pic =
1

ln 2
ln
dt−[kt/4] − dt−[kt/2]
dt−[kt/2] − dt−kt

.

4Because of degree interdependences in the CF model, this and related estimators, which ignore the

interdependences, should formally be referred to as pseudo maximum likelihood estimators. In the main text

of the paper, we prove consistency of the Hill estimator.
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Dekkers et al. (1989) propose an estimator based on higher moments of the Hill estimator,

η̂Dek = η̂Hill + 1− 1

2

1−

(
η̂Hill

)2
1
kt

∑∞
d=d†t+1

Dt(d)
(

ln d

d†t

)2

−1

.

Smith (1987) proposes a maximum likelihood tail estimator assuming generalized Pareto

distribution with density f(d) = 1
σ

(
1 +

η(d−d†t )
σ

)−1/η−1
conditional on d > d†t ,

η̂Smith = argmax
η,σ

−1 + 1/η

kt

∞∑
d=d†t+1

Dt(d) ln

(
1 +

η(d− d†t)
σ

)
− lnσ.

2.3 Selection of Tail Cutoff

Up to this point, we have treated d†t as given. Next, we discuss several methods for selecting

d†t as this is a crucial step for any tail estimator. For the Hill estimator, multiple methods are

proposed in the literature (Beirlant et al., 2006, Chapter 4.7). We use a popular analytical

method, which we refer to as MS, aiming to balance the asymptotic bias and variance by se-

lecting d†t such that it minimizes the asymptotic mean squared error (AMSE) of the estimator

(Beirlant et al., 1996; Matthys and Beirlant, 2000), given by

AMSE
(
η̂Hill

d†t

)
= ABias2

(
η̂Hill

d†t

)
+ AVar

(
η̂Hill

d†t

)
,

where AVar
(
η̂Hill

d†t

)
= η2/kt. Lower d†t yields higher kt which, in turn, reduces the variance,

but increases the bias. Estimating ABias
(
η̂Hill

d†t

)
relies on the use of scaled log-spacing rep-

resentation of the Hill estimator as in Beirlant et al. (2002). Define scaled log-spacing as

Zj = j(log dt−j+1 − log dt−j), where j = 1, . . . , kt. The asymptotic bias can be estimated as5

ÂBias
(
η̂Hill

d†t

)
=

6

kt

kt∑
j=1

(
j

kt + 1
− 1

2

)
Zj.

For the other tail estimators, there are no equivalent methods, but for comparison we

apply d†t selected by this method to other tail estimators as well.

Clauset et al. (2009) proposes a universal method for any tail estimator: to choose d†t so

that the distance, D, between the theoretical cumulative distribution of the underlying power-

law, Fη̂(d) = 1 − (d/d†t)
−1/η̂, with estimated η̂ and the empirical cumulative distribution,

5For more details on deriving this expression see Chapter 4.5.1 of Beirlant et al. (2006). There

ABias
(
η̂Hill
d†t

)
= b

1+β and the least-squares estimator for b is given on p. 117. Difficulties of estimating β

are discussed on the same page and based on this discussion we set β = 1.
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F̂kt(d) =
∑d

i=d†t+1
Dt(i)/kt, is minimized for all d > d†t . The authors suggest using the

Kolmogorov-Smirnov (KS) distance,6 so that the distance is given by

DKS = max
d>d†t

∣∣∣Fη̂(d)− F̂kt(d)
∣∣∣ .

2.4 Simulations

Our simulations (see Supplement, Excel spreadsheet) show that the performance in terms of

the mean square error of various tail estimators is substantially better when the tail cutoff is

selected using the MS method rather than the KS method.

Comparing the performance of all tail estimators, we find that the Smith estimator out-

performs all tail estimators. The Hill estimator is among the best performing tail estimators;

it shows a substantial bias for t = 1000, which reduces with the number of observations. The

continuity correction suggested by Clauset et al. (2009) slightly helps in reducing the bias.

The NLS estimators perform better than the tail estimators only in small samples with at

most 1000 observations. The introduced PML and GMM estimators outperform both the

NLS and tail estimators.
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