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our results rely onnovel duality and complementary slackness theorems.
Our analysis extends to a general problemof assigning one-dimensional
inputs to productive units, which we call “optimal productive trans-
port.” This problem covers additional applications including match-
ing with peer effects (assigning workers to firms, students to schools,
or residents to neighborhoods), robust option pricing (assigning fu-
ture asset prices to price distributions), and partisan gerrymandering
(assigning voters to districts).
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I. Introduction

Following the seminal papers of Rayo and Segal (2010) and Kamenica
and Gentzkow (2011), the past decade has witnessed an explosion of in-
terest in the design of optimal information disclosure policies, or Bayes-
ian persuasion. While significant progress has been made in the special
case where the sender’s and receiver’s utilities are linear in the unknown
state (e.g., Gentzkow and Kamenica 2016; Kolotilin et al. 2017; Kolotilin
2018; Dworczak and Martini 2019; Kleiner, Moldovanu, and Strack
2021)—so that a distribution over states can be summarized by its mean—
the general, nonlinear case is far less well understood. The literature to
date thus has little to say about the qualitative implications of economically
natural curvature properties of utilities or about the robustness of optimal
disclosurepatterns uncovered in the linear casewhenutilities are nonlinear.
This paper studies persuasion with nonlinear preferences as an in-

stance of a general class of economic models that we call “optimal pro-
ductive transport.” In the persuasion context, we consider a standard set-
ting with one sender and one receiver, where the receiver’s action and the
state of the world are both one-dimensional. We assume that the sender
always prefers higher actions, the receiver prefers higher actions at
higher states, and the receiver’s expected utility is single-peaked in his ac-
tion for any belief about the state. In this model, the receiver’s action is
optimal if and only if his expectedmarginal utility from increasing his ac-
tion equals zero: that is, if and only if the receiver’s first-order condition
holds. This first-order approach is key for tractability. We provide three
types of results, all of which have general analogues beyond persuasion.
First, we show that it is always without loss to focus on “pairwise” signals,

where each induced posterior belief has at most binary support. More-
over, under a nonsingularity condition on the sender’s and receiver’s util-
ities—whichwe call the “twist condition”—every optimal signal is pairwise.
Second, we ask when it is optimal for the sender to induce higher actions

with riskier or safer prospects. That is, when the sender pools two extreme
states x1 < x4 and separately pools two moderate states x2 ≤ x3 such that
x1 < x2 ≤ x3 < x4, do the extreme states induce a higher action—in which
case, we say that disclosure is “single-dipped,” as the receiver’s action
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is single-dipped on the set {x1, x2, x3, x4}—or a lower action—in which
case, we say that disclosure is “single-peaked”? This question turns out to
be key for understanding optimal disclosure patterns with nonlinear
preferences. Our core results provide general conditions for the opti-
mality of single-dipped disclosure (and, similarly, single-peaked disclo-
sure). The conditions are based on the following simple idea. If disclo-
sure is not single-dipped, then there must exist a single-peaked triple:
a pair of pooled states x1 < x4 and an intervening state x2 ∈ (x1, x4) such
that the induced action at x2 (e.g., action y2) is greater than the induced
action at {x1, x4} (e.g., action y1). Our conditions ensure that any single-
peaked triple can be profitably perturbed in the direction of single-
dippedness by shifting weight on x1 and x4 from y1 to y2, while shifting
weight on x2 in the opposite direction.
Third, we provide conditions for the optimality of either full disclo-

sure, where the state is always disclosed, or (more interestingly) negative
assortative disclosure, where all states are paired in a negatively assorta-
tive manner, so that all prospects can be ordered from safest to riskiest,
and only a single state “in the middle” is disclosed. Intuitively, full disclo-
sure and negative assortative disclosure represent the extremes of maxi-
mum disclosure (disclosing all states) and minimal pairwise disclosure
(disclosing only one state). There is a unique full disclosure outcome,
but there are many negative assortative disclosure outcomes, depending
on the weights on the states in each pair. We further characterize the op-
timal negative assortative disclosure pattern as the solution of a pair of or-
dinary differential equations and provide examples where these equa-
tions admit an explicit solution.
While this paper is mainly motivated by Bayesian persuasion, the theory

we develop applies equally to several other applications. We consider
three:matchingwith peer effects (e.g., assigningworkers to firms, students
to schools, or residents to neighborhoods tomaximize welfare), robust op-
tion pricing (assigning future asset prices to price distributions to bound
the price of a derivative), and partisan gerrymandering (assigning voters
to districts to maximize expected seat share). To facilitate the analysis of
these applications, in section VII we recast ourmodel in terms of assigning
general “inputs” to “productive units.” Table 1 explains how our general
model maps to each of our applications.
Mathematically, our model combines aspects of a production problem

(combining inputs to produce output) and a transportation problem
(matching inputs and outputs to generate utility)—hence the name “op-
timal productive transport.” The model is a new kind of optimal trans-
port problem. Our key technical results are duality and complementary
slackness theorems for this problem. The closest strand of the optimal
transport literature is that on “martingale optimal transport” (e.g., Beigl-
böck, Henry-Labordère, and Penkner 2013; Galichon, Henry-Labordère,
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and Touzi 2014; Beiglböck and Juillet 2016), which we discuss in sec-
tion III.A.1

The optimal productive transport framework nests a great deal of
prior work, both in persuasion and in the contexts of the other applica-
tions we cover. Some key prior works include Rayo and Segal (2010),
Goldstein and Leitner (2018), and Guo and Shmaya (2019) on persua-
sion; Arnott and Rowse (1987) and Saint-Paul (2001) on matching;
Beiglböck and Juillet (2016) on option pricing; and Friedman and Hol-
den (2008) on gerrymandering. In light of our analysis, some of themain
results in these papers can be viewed as showing that single-dipped or single-
peaked disclosure is optimal—that is, that riskier or safer prospects in-
duce higher actions—in some special settings. For instance, Friedman
and Holden’s (2008) “matching slices” gerrymandering solution, where
a gerrymanderer creates electoral districts that pool extreme supporters
with similarly extreme opponents and wins those districts with the most
extreme supporters and opponents with the highest probability, is an ex-
ample of single-dipped disclosure. Goldstein and Leitner’s (2018) non-
monotone stress tests, where a regulator designs a test that pools the
weakest banks that it wants to receive funding with the strongest banks
(and, subsequently, pools less weak banks with less strong ones), such that
the weakest and strongest banks receive the highest funding, is another
such example. On the other hand, Guo and Shmaya’s (2019) “nested
intervals” disclosure rule, where a designer pools favorable states with

1 A few recent papers apply optimal transport to persuasion, but these works are not very
related to ours either methodologically or substantively. Malamud and Schrimpf (2022) fo-
cus on the question of when optimal signals partition a multidimensional state space;
Arieli, Babichenko, and Sandomirskiy (2024) consider persuasion with multiple receivers;
and Lin and Liu (2024) and Perez-Richet and Skreta (2025) consider limited sender
commitment.

TABLE 1
Atlas of Our Applications

Application Input (x)
Productive
Unit (m) Output (y)

Meaning of Single-
Dippedness

Persuasion State Posterior Receiver action Riskier prospects in-
duce higher actions

Matching with
peer effects

Worker, stu-
dent, or res-
ident with
ability x

Firm, school, or
neighborhood

Peer effect Diverse firms,
schools, or neigh-
borhoods are
more desirable

Option pricing Period 2 asset
price

Period 2 asset
price
distribution

Period 1 asset
price

Riskier assets are
more expensive

Gerrymandering Voter with par-
tisanship x

District Probability that
designer’s
party wins
district

Polarized districts
are stronger
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similarly unfavorable states, and persuades the receiver to take her pre-
ferred action with higher probability at moremoderate states, is an exam-
ple of single-peaked disclosure.
The paper is organized as follows. Section II presents our model in the

context of persuasion. Section III formulates primal and dual versions of
our problem and establishes strong duality and complementary slack-
ness. Section IV shows that pairwise signals are without loss. Sections V
and VI present our main substantive results: section V provides condi-
tions for single-dipped or single-peaked disclosure to be optimal, and
section VI provides conditions for full disclosure or negative assortative
disclosure to be optimal. Section VII reframes ourmodel as “optimal pro-
ductive transport” and applies it to matching, option pricing, and gerry-
mandering, as well as some specific persuasion problems. Section VIII
concludes. Additional results, as well as all proofs, are deferred to the ap-
pendixes (apps. D–F are available online).

II. Persuasion with Nonlinear Preferences

For concreteness, we exposit our model and main results in the context
of Bayesian persuasion. In section VII.A, we rephrase the model as a gen-
eral problem of assigning inputs to productive units, which we call opti-
mal productive transport. This more general framing covers our match-
ing, option pricing, and gerrymandering applications.

A. Model

We consider a standard persuasion problem, where a sender chooses a
signal to reveal information to a receiver, who then takes an action.
The sender’s utility V(y, x) and the receiver’s utility U(y, x) depend on the
receiver’s action y ∈ Y ≔ ½0, 1� and the state of the world x ∈ ½0, 1�. The
sender and receiver share a common prior f ∈ Δ(½0, 1�), with support
X ≔ supp(f).2 A signal t ∈ Δ(Δ(X )) is a distribution over posterior beliefs
m ∈ Δ(X ) such that the average posterior equals the prior: Et½m� 5 f

(Aumann andMaschler 1995; Kamenica andGentzkow 2011). An outcome
p ∈ Δ(Y � X ) is a joint distribution over actions and states. As we will see,
it is equivalent to view the sender as choosing a signal t (the “signal-based
problem”) or as directly choosing an outcome p subject to an obedience
constraint (the “outcome-based problem”).
We impose four standard assumptions on preferences, which are sim-

ilar to those in canonical unidimensionalmodels of communication such

2 Throughout, for any compact metric space X, Δ(X ) denotes the set of Borel probability
measures on X, endowed with the weak* topology. For any m ∈ Δ(X ), its support supp(m) is
the smallest compact set of measure one.
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as signaling (Spence 1973), cheap talk (Crawford and Sobel 1982), and
hard information disclosure (Seidmann and Winter 1997). First, utilities
are smooth.
Assumption 1. V(y, x) and u(y, x) ≔ ∂U (y, x)=∂y are three times

differentiable.
Apart from the receiver’s marginal utility u, we denote partial derivatives
with subscripts: for example, Vy(y, x) 5 ∂V (y, x)=∂y.
Second, the receiver’s expected utility is single-peaked in his action

for any posterior belief.
Assumption 2. u(y, x) satisfies strict aggregate single-crossing in y:

for all posteriors m ∈ Δ(X ),ð
X

u(y, x)dm(x) 5 0⟹

ð
X

uy(y, x)dm(x) < 0:

Quah and Strulovici (2012) and Choi and Smith (2017) characterized a
weak version of aggregate single-crossing. We provide an analogous char-
acterization of strict aggregate single-crossing in appendix A. A suffi-
cient condition is strict monotonicity of u (or equivalently strict concav-
ity of U): that is, uy(y, x) < 0 for all (y, x). In fact, appendix A shows
that strict aggregate single-crossing is equivalent to strict monotonicity up
to a normalization.
Third, the receiver’s optimal action satisfies an interiority condition.3

Assumption 3. minx∈½0,1�u(0, x) 5 maxx∈½0,1�u(1, x) 5 0.
The key implication of assumptions 1–3 is that for any posterior m, the
receiver’s optimal action g(m) ≔ arg maxy∈½0,1�Em½U (y, x)� is unique and
is characterized by the first-order conditionð

X

u(g(m), x)dm(x) 5 0: (1)

Our assumptions thus allow a “first-order approach” to the persuasion
problem, similar to the approach of Holmström (1979) and Mirrlees
(1999) to the classical moral hazard problem.4

Uniqueness of the receiver’s optimal action implies that any signal t in-
duces a unique outcome pt and that we can define the sender’s indirect
utility from inducing posterior m as

W (m) 5

ð
X

V (g(m), x)dm(x):

3 The substance of assumption 3 is that for each x, there exists y such that u(y, x) 5 0.
Note that it can never be optimal for the receiver to take any y such that u(y, x) has a con-
stant sign for all x. We can then remove all such y from Y and renormalize Y to [0, 1], so
that assumption 3 holds.

4 The first-order approach to persuasion was introduced by Kolotilin (2018).
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Fourth, the sender prefers higher actions, and the receiver’s utility is
supermodular.
Assumption 4. Vy(y, x) > 0 and ux(y, x) > 0.
Together with assumptions 1–3, assumption 4 ensures that for each ac-

tion y there is a unique state x(y) such that u(y, x(y)) 5 0 (i.e., the receiv-
er’s optimal action at x(y) is y) and that x(y) is a strictly increasing, con-
tinuous function with range [0, 1].
A common interpretation of the receiver’s action y ∈ ½0, 1� is that the

receiver has a private type andmakes a binary choice—say, whether to ac-
cept or reject a proposal—and y is the receiver’s choice of a cutoff type
below which he accepts. This interpretation is especially useful for some
special cases of the model, as we see next.5

B. Special Cases

We list some leading special cases of the model, which we return to pe-
riodically to illustrate our results:

1. The linear case (Gentzkow and Kamenica 2016): u(y, x) 5 x 2 y
andV (y, x) 5 V (y).That is,g(m) 5 Em½x� andV is state-independent.
This is the well-studied case where the sender’s indirect utilityW(m)
depends only on Em½x�.6

2. The linear receiver case: u(y, x) 5 x 2 y but V is arbitrary (e.g.,
possibly state-dependent). Here the receiver’s preferences are as
in the linear case, while the sender’s preferences are general.7

2a. The separable subcase (Rayo and Segal 2010): V (y, x) 5 w(x)G(y)
with w > 0 and G > 0. An interpretation is that the receiver has
a private type t with distribution G and accepts a proposal if and
only if Em½x� ≥ t and that the sender’s utility when the proposal is
accepted is w(x).8

5 To spell out this interpretation, let g(tjx) be the conditional density of the receiver’s
type t ∈ ½0, 1� given the state x ∈ ½0, 1�. The sender’s and receiver’s utilities from rejection
are normalized to zero. The sender’s and receiver’s utilities from acceptance are functions
~v(t, x) and ~u(t, x), with ~u(t, x)g(tjx) satisfying assumption 2. For y ∈ ½0, 1� (interpreted as
the cutoff such that the receiver accepts if and only if t ≤ y), we recover our model with
V (y, x) 5

Ð y

0 ~v(t, x)g(tjx)dt and U (y, x) 5
Ð y

0 ~u(t, x)g(tjx)dt.
6 More generally, utilities can be transformed to fall in the linear case if u and Vy are af-

fine inm(x) for some function m. In this case, g(m) 5 a(Em½m(x)�) for some function a, and
W (m) 5 H (Em½m(x)�) 1 Em½l(x)� for l(x) 5 V (0, x) and H (y) 5

Ð a(y)

0 Vy(~y,m21(y))d~y. Since
Et½Em½l(x)�� 5 Ef½l(x)� for any signal t, the sender’s problem is the same if the state is
~x 5 m(x), the receiver’s marginal utility is ~x 2 y, and the sender’s utility is H(y).

7 The assumption that Vy(y, x) > 0 is unnecessary in the linear receiver case.
8 Rayo and Segal focused on the sub-subcase with the uniform distribution G(y) 5 y.

They assume that the state (x, z) is two-dimensional, that the sender’s and receiver’s mar-
ginal utilities are Vy(y, x, z) 5 z and u(y, x) 5 x 2 y, and that there are finitely many states
(x, z), so generically the sender’s utility can be written as Vy(y, x) 5 w(x). Rayo (2013),
Nikandrova and Pancs (2017), and Onuchic and Ray (2023) consider the separable
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2b. The translation-invariant subcase: V (y, x) 5 P(y 2 x). An inter-
pretation is that the receiver “values” the proposal at Em[x] and that
the sender’s utility depends on the amount by which the proposal is
“overvalued,” Em½x� 2 x. For example, a school may care about the
extent to which its students are over- or underplaced. These prefer-
ences are similar to those in Goldstein and Leitner’s (2018) model
of stress tests (see app. E).

3. The state-independent sender case: V (y, x) 5 V (y), but u is arbi-
trary. Here the sender’s preferences are as in the linear case, while
the receiver’s preferences are general.

3a. The separable subcase: u(y, x) 5 I (x)(x 2 y), with I > 0. This sub-
case extends the linear case by letting the receiver put more weight
on some states than others.

3b. The translation-invariant subcase: u(y, x) 5 T (x 2 y), with
T (0) 5 0. An example that fits this subcase is that the sender’s util-
ity when the proposal is accepted is 1, and accepting the proposal
corresponds to the receiver undertaking a project that can either
succeed or fail, where the receiver’s payoff is 1 2 kwhen the project
succeeds and 2k when it fails (and 0 when it is not undertaken),
with k ∈ (0, 1). The difficulty of the project is 1 2 x, the receiver’s
ability is 1 2 t, the receiver’s “bad luck” ε has distribution J, and
the project succeeds if and only if 1 2 x ≤ 1 2 t 2 ε or, equiva-
lently, ε ≤ x 2 t. This example fits the current subcase with V equal
to the distribution of t and T(x 2 y) 5 J (x 2 y) 2 k.

3c. The quantile sub-subcase: u(y, x) 5 1fx ≥ yg 2 k, with k ∈ (0, 1).
This subcase corresponds to the previous example with J (x 2 y) 5
1fx ≥ yg, so the project succeeds if and only if the receiver’s ability ex-
ceeds the project’s difficulty. While u is now discontinuous, this
subcase arises as a limit of the translation-invariant case. Kolotilin
and Wolitzky (2024b) and Yang and Zentefis (2024) study the quan-
tile sub-subcase.

III. Optimality Conditions

This section establishes optimality conditions that form the basis for our
analysis. Section III.A formulates signal-based and outcome-based primal
and dual problems and shows that they are equivalent. We will make use
of both formulations. Section III.B establishes our key complementary
slackness theorem.

subcase where x is continuous and (x, z) is supported on the graph of x → w(x). Rochet
and Vila (1994), Tamura (2018), Kramkov and Xu (2022), and Dworczak and Kolotilin
(2024) allow more general distributions of (x, z) ∈ R2.
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A. Primal and Dual Problems

The sender’s signal-based primal problem is to find a signal t ∈ Δ(Δ(X ))
to

maximize 

ð
Δ(X )

W (m)dt(m) (P)

subject to 
ð
Δ(X )

mdt(m) 5 f: (BP)

Here, the primal constraint (BP) is the usual “Bayes plausibility” constraint
(Kamenica and Gentzkow 2011).
Next, let L(X) denote the set of Lipschitz continuous functions on X.

The signal-based dual problem is to find a “price function” p ∈ L(X ) to

minimize 

ð
X

p(x)df(x) (D)

subject to 
ð
X

p(x)dm(x) ≥ W (m), for all m ∈ Δ(X ): (ZP)

The interpretation is that p(x) is the shadow price of state x, and the dual
constraint (ZP) is the “zero profit” condition that the sender’s indirect util-
ity from inducing any posterior m cannot exceed the expectation of p(x)
under m. This interpretation will become clearer in the general frame-
work of section VII.A.
A preliminary result is that strong duality holds: solutions to (P) and

(D) exist and give the same value.
Lemma 1. There exists t ∈ Δ(Δ(X )) that solves (P); there exists

p ∈ L(X ) that solves (D); and the values of (P) and (D) are equal: for
any solutions t of (P) and p of (D), we haveð

Δ(X )

W (m)dt(m) 5

ð
X

p(x)df(x):

Lemma 1 follows by showing thatW(m) is Lipschitz continuous and ap-
plying corollary 2 of Dworczak and Kolotilin (2024), which in turn gener-
alizes theorem 2 of Dworczak and Martini (2019) from linear persuasion
problems to nonlinear ones.9

Next, the outcome-based primal problem is to find an outcome
p ∈ Δ(Y � X ) to

9 Corollary 2 of Dworczak and Kolotilin (2024) is proved using strong duality in an optimal
transport problem, as in Villani (2009). Further duality results for persuasion problems in-
clude those of Dizdar and Kováč (2020), Kramkov and Xu (2022), Smolin and Yamashita
(2023), and Galperti, Levkun, and Perego (2024).
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maximize 

ð
Y�X

V (y, x)dp(y, x) (P’)

subject to 
ð
Y�~X

dp(y, x) 5

ð
~X

df(x), for all measurable ~X ⊂ X, (BP’)

ð
~Y�X

u(y, x)dp(y, x) 5 0,  for all measurable  ~Y ⊂ Y: (OB)

Here, (BP’) is an outcome-based version of Bayes plausibility, which
says that the marginal of p on X equals the prior f; and (OB) is the “obe-
dience” constraint that the receiver’s action at each posterior m is g(m). A
joint distribution p that violates (OB) is inconsistent with optimal play by
the receiver, as there exists ~Y ⊂ Y such that the receiver’s play is subop-
timal conditional on the event {y ∈ ~Y }. Conversely, for any joint distribu-
tion p that satisfies (BP’) and (OB), if the sender designs a mechanism
that draws (y, x) according to p and recommends action y to the receiver,
it is optimal for the receiver to obey the recommendation. We therefore
say that an outcome p is “implementable” if and only if it satisfies (BP’)
and (OB) and “optimal” if and only if it solves (P’).
Finally, letting B(Y ) denote the set of bounded, measurable functions

on Y, the outcome-based dual problem is to find p ∈ L(X ) and q ∈ B(Y )
to

minimize 

ð
X

p(x)df(x) (D’)

subject to p(x) ≥ V (y, x) 1 q(y)u(y, x), for all (y, x) ∈ Y � X : (ZP’)

The interpretation is that p(x) is the shadow price of state x; q(y) is the
value of relaxing the obedience constraint at action y; and (ZP’) says that
p(x) is no less than the sender’s value from assigning state x to any action
y, where this value is the sum of the sender’s utility, V(y, x), and the prod-
uct of q(y) and the amount by which obedience at y is relaxed when state
x is assigned to action y, u(y, x).
We now establish that the price functions in the signal-based and outcome-

based formulations coincide. Hence, by lemma 1, strong duality holds in
the outcome-based formulation, as well as the signal-based one.10

Lemma 2. A price function p ∈ L(X ) is feasible (optimal) for (D) if
and only if there exists q ∈ B(Y ) such that (p, q) is feasible (optimal) for
(D’).

10 Strong duality in the outcome-based formulation is established under slightly different
assumptions in lemmas 1 and 2 of Kolotilin (2018). However, a key step in the proof—that
q can be taken to be bounded—is incomplete in Kolotilin (2018).
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B. Complementary Slackness

Letting p be the optimal price function (which we will see in remark 1 is
unique), define the set

Λ 5 m ∈ Δ(X ) :

ð
X

p(x)dm(x) 5 W (m)

� �
: (2)

Note that Λ is compact, because Em[p(x)] and W(m) are continuous in m.
By lemma 1, together with (BP), a signal t is optimal if and only if

ð
Δ(X )

ð
X

p(x)dm(x) 2 W (m)

� �
dt(m) 5 0:

Hence, since the integrand is nonnegative by (ZP) and Λ is compact, t is
optimal if and only if supp(t) ⊂ Λ. Any posterior m ∉ Λ is thus excluded
from the support of any optimal signal. In analogy with the optimal
transport literature (e.g., sec. 3 of Ambrosio, Brué, and Semola 2021),
we refer to the set Λ as the “contact set.”
The following is our main technical result.
Theorem 1. There exists q ∈ B(Y ) such that

1. (p, q) is optimal for (D’);
2. for all m in Λ (and, thus, in the support of any optimal signal t), we

have

q(g(m)) 5 2

ð
X

Vy(g(m), x)dm(x)ð
X

uy(g(m), x)dm(x)
; (3)

3. for all nondegenerate m in Λ (and, thus, in the support of any op-
timal signal t), the function q has derivative q 0(g(m)) at g(m) satis-
fying, for all x ∈ supp(m),

Vy(g(m), x) 1 q(g(m))uy(g(m), x) 1 q 0(g(m))u(g(m), x) 5 0: (4)

Theorem 1 is our key tool for characterizing optimal signals. Intui-
tively, by complementary slackness, the support of any optimal outcome
p is contained in the set of points (y, x) that satisfy (ZP’) with equality.
Thus, if it is ever optimal to induce action y at state x—that is, if y maxi-
mizes V (y, x) 1 q(y)u(y, x)—then ymust satisfy the first-order condition

Vy(y, x) 1 q(y)uy(y, x) 1 q 0(y)u(y, x) 5 0,

which is just (4) with g(m) 5 y. Moreover, taking the expectation of this
equation with respect to m yields (3). This equation simply says that q(y)
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equals the product of the sender’s expected marginal utility at y and the
rate at which y increases as obedience is relaxed, where the latter term
equals21=Em½uy(y, x)� by the implicit function theorem applied to obedi-
ence. Note that in the linear case, q(y) simply equals V 0(y), a useful point
that also appears implicitly in Dworczak andMartini (2019) and explicitly
in Dworczak and Kolotilin (2024).
As shown in appendix F, another implication of theorem 1 is as

follows.
Remark 1. There is a unique solution p to (D).
Lemmas 1 and 2 and theorem 1 can be compared to results in optimal

transport. In standard optimal transport, two marginal distributions are
given (e.g., ofmen andwomen, or workers andfirms), and the problem is
to find an optimal joint distribution with the given marginals. In our
problem, the marginal distribution over states is given (by the prior f),
and the problem is to find an optimal joint distribution with this mar-
ginal, where for each action the conditional distribution over states sat-
isfies obedience. Strong duality and complementary slackness theorems
are likewise key tools in optimal transport (e.g., Villani 2009, theorem 5.10),
but the relevant versions of these results differ from ours.11

The most relevant strand of the optimal transport literature is that on
martingale optimal transport (MOT). The MOT problem is to find an
optimal joint distribution of two variables (e.g., y and x) with given
marginals, subject to the martingale constraint that the expectation of
x given y equals y. This problem coincides with our linear receiver case
but with an exogenously fixed distribution of the receiver’s action. Moti-
vated by problems in mathematical finance, Beiglböck, Henry-Labordère,
and Penkner (2013; see also Beiglböck, Nutz, and Touzi 2017) introduce
MOT and prove that the primal and dual problems have the same value;
however, they also show that their dual problem may not have a solution,
unlike in our model with endogenous actions (or in standard optimal
transport). Results in MOT also do not establish compactness of the con-
tact set, which holds in our model as well as in standard optimal transport.
Thus, MOT is related to our linear receiver case, but the endogenous ac-
tion distribution apparently makes our model more tractable.12

11 For example, in standard optimal transport, both dual variables appear in the dual
objective function, and they are both uniquely determined.

12 The MOT literature uses the contact set of an outcome-based dual problem. See
Kolotilin, Corrao, and Wolitzky (2022) for an alternative development of the results in
the current paper that relies on the contact set of our outcome-based dual, (D’). The ap-
proach in the current version, which is based on the contact set Λ of the signal-based dual,
(D), turns out to be simpler.
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IV. Pairwise Disclosure and the Twist Condition

Our first substantive result is that there is always an optimal signal that
pools at most two states in every realized posterior and that under an ad-
ditional condition every optimal signal has this property. This result sim-
plifies the persuasion problem to a generalized matching problem,
where the sender chooses what pairs of states to match together and with
what weights.
Formally, a set of posteriors M ⊂ Δ(X ) is pairwise if jsupp(m)j ≤ 2 for

all m ∈ M . A signal t is pairwise if supp(t) is pairwise: that is, a pairwise
signal induces posterior beliefs with at most binary support. For example,
with a uniform prior, for any cutoff x̂ ∈ ½0, 1�, the signal that reveals states
below the cutoff and pools each pair of states x and 1 1 x̂ 2 x for
x ∈ ½x̂, (1 1 x̂)=2� to induce posterior m 5 dx=2 1 d11x̂2x=2 is pairwise.
The special case where x̂ 5 1 is full disclosure, which is also pairwise.
In contrast, no disclosure, where t(f) 5 1, is not pairwise.13

If the receiver’s utility is not quasi-concave, pairwise signals may be sub-
optimal. For example, suppose the sender rules three castles, one of which
is undefended. The state x—the identity of the undefended castle—is
uniformly distributed. Suppose the receiver can attack any two castles and
that payoffs are (21, 11) for the sender and receiver, respectively, if the
receiver attacks the undefended castle and (11, 21) otherwise. Then
any pairwise signal narrows the set of possibly undefended castles to at
most two, so the receiver always wins. But if the sender discloses nothing,
the receiver wins only with probability 2/3.14

In contrast, pairwise signals are without loss under assumptions 1–3.
Moreover, equation (4) implies that if it is optimal to induce the same
action y at three states x1, x2, and x3, then the vector (Vy(y, x1), Vy(y, x2),
Vy(y, x3)) must be a linear combination of the vectors (u(y, x1), u(y, x2),
u(y, x3)) and (uy(y, x1), uy(y, x2), uy(y, x3)). This observation gives a condi-
tion—which we call the “twist condition”—under which pooling more
than two states is suboptimal, so that every optimal signal is pairwise.15

Twist condition.—For any action y and any triple of states x1 < x2 < x3
such that x1 < x(y) < x3, we have jS j ≠ 0,16 where

13 See fig. 2. The “disclose-pair” pattern in fig. 2D is reminiscent of this example but with
different weights on the states in each pair.

14 Pairwise signals are also suboptimal in the price-discrimination problem of Berge-
mann, Brooks, and Morris (2015), as well as in Brzutowski (2024), where U (y, x) 5
1fy ≥ xg 2 y. In these models, the receiver’s utility is not quasi-concave. However, a variant
of Bergemann, Brooks, and Morris (2015) with smooth demand and concave monopoly
profit would fit our assumptions, so pairwise signals would be optimal.

15 The term “twist condition” is in analogy to optimal transport, where the twist condi-
tion is an analogous nonsingularity condition (e.g., definition 1.16 in Santambrogio 2015).

16 Here F⋅F denotes the determinant of a matrix; we use the same notation for the car-
dinality of a set.
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S ≔

Vy(y, x1) Vy(y, x2) Vy(y, x3)

u(y, x1) u(y, x2) u(y, x3)

uy(y, x1) uy(y, x2) uy(y, x3)

0
BBB@

1
CCCA: (5)

We will apply this condition extensively in section V.
Theorem 2. For any signal t (whether optimal or not), there exists a

pairwise signal t̂ that induces the same outcome. Moreover, if the twist
condition holds, then the contact set is pairwise and hence so is any op-
timal signal.
The intuition for the first part of the theorem is that for any posterior m,

there exists a hyperplane passing through it such that all posteriors on
the hyperplane induce the same action, and the extreme points of the hy-
perplane in the simplex have at most binary support. Thus, any posterior
that puts weight on more than two states can be split into posteriors with
at most binary support without affecting the induced outcome. Figure 1
illustrates this argument for a posterior with weight on three states.17

The intuition for the second part is that this splitting leaves an extra
degree of freedom, which can be profitably exploited under the twist con-
dition. Consider a posterior m with supp(m) 5 fx1, x2, x3g. We can split m
into posteriors m0 and m00 with at most binary support that both induce ac-
tion g(m). For example, suppose that supp(m0) 5 fx1, x2g and supp(m00)5
fx1, x3g. Now consider a perturbation that moves probability mass ε on x1
from m0 to m00. This perturbation induces nonzeromarginal changes in the
action at m0 and m00. Under the twist condition, these changes have a non-
zeromarginal effect on the sender’s expected utility, by the implicit func-
tion theorem. Therefore, either this perturbation or the reverse pertur-
bation, where ε is replaced with 2ε, is strictly profitable.18

Prior results by Rayo and Segal (2010), Alonso and Câmara (2016),
and Zhang and Zhou (2016) also give conditions under which all optimal
signals are pairwise. Theorem 2 easily implies these earlier results.19 Note

17 More formally, for a given posterior m, another posterior m0 induces the same action as
m if and only if the action g(m) satisfies the first-order condition (1) at posterior m0. Since
the first-order condition is a moment condition, the set of posteriors that induce action
g(m) is the set of probability distributions that satisfy one moment condition. By the Richter-
Rogosinsky theorem, the extreme points of this set have at most binary support. Hence,
by Choquet’s theorem, m can be written as an expectation, with respect to some measure
jm ∈ Δ(Δ(X )), of distributions with at most binary support that all induce action g(m). Fi-
nally, by the measurable selection theorem, the mapping from m to jm can be taken to be
measurable and can thus be used to define a pairwise signal that induces the same distri-
bution on Y � X as any given signal t.

18 Formally, the second part of theorem 2 directly follows from theorem 1.
19 Proposition 4 in Alonso and Câmara (2016) states that if u(y, x) 5 x 2 y and there do

not exist z ≤ 0 and i ∈ R such that Vy(y, xi) 5 zxi 1 i for i 5 1, 2, 3, then it is not optimal to
induce action y at states x1, x2, and x3. This result is too strong as stated, and it is not correct
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that the twist condition always fails in the linear case, where jS j 5 0.Hence,
in the linear case, theorem 2 never rules out pooling multiple states, and
indeed poolingmultiple states is often optimal (e.g., Kolotilin et al. 2017).20

An immediate corollary of theorem 2 is that no disclosure is generically
suboptimal when there are at least three states, because for a fixed action
y, a generic vector (Vy(y, x))x∈X with jX j ≥ 3 coordinates cannot be
expressed as a linear combination of two fixed vectors (u(y, x))x∈X and
(uy(y, x))x∈X (for any standard notion of genericity, e.g., Hunt, Sauer,
and Yorke 1992, 222), as is required by (4). Moreover, in the linear re-
ceiver and state-independent sender cases, if no disclosure is optimal for
all priors then the sender’s and receiver’s utilities must take a particular
nongeneric form: they must fall in the linear case, as defined in foot-
note 6, with a concave V.
Corollary 1. For any prior f with jsupp(f)j ≥ 3 and any u, no dis-

closure is suboptimal for generic Vy. Moreover, in the linear receiver

FIG. 1.—Pairwise signals are without loss. The optimal action at any posterior on the line
between m0 and m00 equals g(m), so splitting m into m0 and m00 eliminates a nonbinary-support
posterior without changing the outcome.

unless z is also allowed to be positive. Theorem 2 implies this corrected version of Alonso
and Câmara’s result.

20 Of course, theorem 2 shows that even when pooling multiple states is optimal, there
also exists an optimal pairwise signal, where the “multistate pool” is split into pairs. Con-
versely, if multiple posteriors all induce the same action, they can be pooled without affect-
ing the outcome.
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and state-independent sender cases, no disclosure is optimal for all priors
f ∈ Δ(½0, 1�) if and only if there exist m, l : ½0, 1�→R and concave H :
R→R such that

W (m) 5 H (Em½m(x)�) 1 Em½l(x)�, for all m ∈ Δ(½0, 1�): (6)

Given Kamenica and Gentzkow’s concavification result, corollary 1 im-
plies that, for generic utilities, the sender’s indirect utility is not concave
in the posterior when there are more than two states. Note that corollary 1
allows the case where u and Vy always have the opposite sign, so the send-
er’s and receiver’s ordinal preferences over actions are diametrically op-
posed. Hence, even in this case no disclosure is generically suboptimal.

V. Single-Dipped and Single-Peaked Disclosure

The next two sections present our main results, which characterize opti-
mal disclosure patterns. The current section asks when it is optimal for
riskier or safer prospects to induce higher actions: that is, when optimal
signals are “single-dipped” or “single-peaked.”21 As we will see, this ques-
tion unifies and generalizes much of what is known about special cases of
the persuasion problem with nonlinear preferences, as well as other
models that fit our optimal productive transport framework.22

A. Single-Dippedness/-Peakedness

A signal t is “single-dipped” (“-peaked”) if for any m1, m2 ∈ supp(t) such
that supp(m1) contains x1 < x3 and supp(m2) contains x2 ∈ (x1, x3), we have
g(m1) ≥ (≤)g(m2). Similarly, t is “strictly single-dipped” (“-peaked”) if for
any m1, m2 ∈ supp(t) such that supp(m1) contains x1 < x3 and supp(m2)
contains x2 ∈ (x1, x3), we have g(m1) > (<)g(m2). We also apply these defi-
nitions to an arbitrary set of posteriors M ⊂ Δ(X ) by replacing supp(t)
with M in the definitions. In particular, a pairwise signal is single-dipped
if the induced receiver action is single-dipped on each set of nested
pairs of states.

21 Recall that we refer to “riskiness” in terms of the range of a posterior’s support: if
x1 < x2 ≤ x3 < x4, then a posterior with support {x1, x4} is riskier than one with support
{x2, x3}.

22 In the MOT context, Beiglböck and Juillet (2016) argue that single-dippedness/
-peakedness are canonical properties analogous to positive/negative assortativity in standard
matching models. Mathematically, positive/negative assortativity corresponds to monoto-
nicity with respect to first-order stochastic dominance, while single-dippedness/-peakedness
corresponds to monotonicity with respect to a variability order that depends on u; when
u(y, x) 5 x 2 y, this variability order is the usual convex order.
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An equivalent definition is that a signal t is single-dipped if it never
induces a strictly single-peaked triple (y1, x1), (y2, x2), (y1, x3), with
x1 < x2 < x3 and y1 < y2, in that there exist m1, m2 ∈ supp(t) such that x1,
x3 ∈ supp(m1) and y1 5 g(m1), and x2 ∈ supp(m2) and y2 5 g(m2). (Other-
wise, such a triple would witness a violation of single-dippedness.) Corre-
spondingly, we say that a set Γ ⊂ X � Y is single-dipped if it does not
contain a strictly single-peaked triple; and an outcome p is single-dipped
if p(Γ) 5 1 for some single-dipped set Γ ⊂ X � Y .23

Each panel in figure 2 illustrates a signal in the linear receiver case
(u(y, x) 5 x 2 y). Figure 2A is full disclosure, which is trivially strictly
single-dipped, as no states are paired. Figure 2B is no disclosure, which
is single-dipped but not strictly single-dipped. Panels C–E of figure 2 are
all strictly single-dipped. Figure 2C is an exampleofnegative assortativedis-
closure, where state x 5 1=3 is disclosed and the other states are paired
with weight 2/3 on the higher state in each pair. Figure 2D shows a signal
where all states below 1/3 (as well as state 1/2) are disclosed, and the
other states are paired with weight 3/4 on the higher state in each pair.
This “disclose-pair” pattern is a strictly single-dipped analogue of upper-
censorship, where all states below a cutoff are disclosed and all states
above the cutoff are pooled (e.g., Kolotilin, Mylovanov, and Zapechelnyuk
2022). Upper-censorship is only weakly single-dipped, whereas disclose-
pair splits up the pooling region in upper-censorship to obtain strict single-
dippedness. Figure 2E shows a more complicated strictly single-dipped sig-
nal. While strict single-dippedness implies that each action is induced
at two states at most, this panel shows that more than two actions can be
induced at a single state (here, state 2/5).24 Finally, figure 2F shows “match-
ing across themedian” (e.g., Kremer andMaskin 1996), which is not single-
dipped, for example, because it contains the strictly single-peaked triple
{(1=4, 1=2), (1=2, 3=4), (3=4, 1=2)}.
All of our results (and all proofs, except for the proof of theorem 4) are

symmetric between the single-dipped and single-peaked cases. We thus
present our results and proofs only for the single-dipped case (except
for the proof of theorem 4), omitting the analogous results for the single-
peaked case.
Remark 2. A strictly single-dipped set can be described by two func-

tions x1 and x2 that specify the states x1(y) and x2(y), which are pooled
together to induce each action y. Specifically, for any strictly single-
dipped set Λ, there exist unique functions x1 and x2 from YΛ 5
fg(m) : m ∈ Λg to X such that supp(m) 5 fx1(g(m)), x2(g(m))g for all

23 These definitions extend naturally to strict single-dippedness and (strict) single-
peakedness.

24 Also, while the function x2 defined in remark 2 is always monotone under strict single-
dippedness, figure 2E shows that the function x1 can be nonmonotone.

1350 journal of political economy



m ∈ Λ, x1(y) 5 x(y) 5 x2(y) or x1(y) < x(y) < x2(y) for all y, and
x2(y) ≤ x2(y0) and x1(y0) ∉ (x1(y), x2(y)) for all y < y0.25

B. Variational Theorem

The next result captures the core economic logic behind single-
dippedness. It is also our key tool for determining when optimal signals

FIG. 2.—Some single-dipped disclosure patterns. Each panel displays, for the indicated
signal t (e.g., full disclosure in panel A) the set of points (x, g(m)) where x ∈ supp(m) and
m ∈ supp(t).

25 This remark follows from corollary 1.6 and lemma A.9 of Beiglböck and Juillet (2016).
For completeness, we provide a simple self-contained proof.
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are single-dipped: we use it to establish our main sufficient condition for
single-dipped disclosure to be optimal (theorem 4, in sec. V.C), and use
it directly to study some applications in appendix E.26

Theorem 3. Suppose that for any pair of actions y1 < y2 and any triple
of states x1 < x2 < x3 such that x1 < x(y1) < x3, there exists a vector b ≥ 0
such that Rb ≥ 0 and Rb ≠ 0, where

R ≔

V (y2, x1) 2 V (y1, x1) 2 (V (y2, x2) 2 V (y1, x2)) V (y2, x3) 2 V (y1, x3)

2u(y1, x1) u(y1, x2) 2u(y1, x3)

u(y2, x1) 2u(y2, x2) u(y2, x3)

0
BB@

1
CCA:

Then the contact set is single-dipped and hence so is every optimal signal.
The intuition behind theorem 3 is very simple and is illustrated in fig-

ure 3. The condition in theorem 3 says that a signal that induces a strictly
single-peaked triple (y1, x1), (y2, x2), (y1, x3) with positive probability can be
improved by reallocating mass b1 on x1 and mass b3 on x3 from y1 to y2,
while reallocating mass b2 on x2 from y2 to y1. This reallocation is profit-
able for the sender, because the sender’s expected utility increases when
y1 and y2 are held fixed (i.e., the first coordinate ofRb is nonnegative); the
receiver’s marginal utility conditional on being recommended y1 in-
creases (i.e., the second coordinate of Rb is nonnegative), which in-
creases the receiver’s action and hence increases the sender’s expected
utility; and the receiver’s marginal utility conditional on being recom-
mended y2 also increases (i.e., the third coordinate of Rb is nonnegative),
which again increases the sender’s expected utility. Moreover, at least one
of these improvements is strict (i.e., Rb ≠ 0). The same logic also applies
for any signal that induces a strictly single-peaked triple, even if this triple
occurs with 0 probability, except nowmassmust be reallocated from small
intervals around x1, x2, and x3.27

C. Sufficient Conditions for Single-Dipped Disclosure

We can now give our main sufficient condition on utilities for single-
dipped disclosure to be optimal. This is a central result of our paper.
As we will see, our condition covers several prior models, as well as some
new applications.
Theorem 4. If uyx(y, x)=ux(y, x) and Vyx(y2, x)=ux(y1, x) are increasing

in x for any y and y1 ≤ y2, then there exists an optimal single-dipped signal.

26 Theorem 3 provides conditions under which every optimal signal is single-dipped. In
addition, lemma 9 in app. C provides weaker conditions under which some optimal signal
has this property.

27 Formally, this step relies on our complementary slackness theorem, theorem 1.
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If in addition either uyx(y, x)=ux(y, x) or Vyx(y2, x)=ux(y1, x) is strictly in-
creasing in x for any y and y1 ≤ y2, then the contact set is strictly single-
dipped and hence so is every optimal signal.
The proof establishes single-dippedness by constructing perturbations

that satisfy the conditions in theorem 3 and further establishes strict
single-dippedness by verifying the twist condition from theorem 2.
The intuition for theorem 4 is relatively straightforward in the linear

receiver and state-independent sender cases. (See fig. 4.) In the linear
receiver case, we have uyx(y, x)=ux(y, x) 5 0 and Vyx(y2, x)=ux(y1, x) 5
Vyx(y2, x), so our sufficient conditions for single-dipped disclosure to

FIG. 3.—Profitable perturbation of a nonsingle-dipped signal. The figure shows a per-
turbation that shifts weights b1 and b3 on x1 and x3 from a posterior inducing action y1
to a posterior inducing action y2 and shifts weight b2 on x2 in the opposite direction. This
perturbation is profitable if it increases the receiver’s expected marginal utility at y1 and y2
and increases the sender’s expected utility for fixed y1 and y2.

FIG. 4.—Intuition for theorem 4 in two special cases. A, In the linear receiver case, when
the sender’s utility increment V (y2, x) 2 V (y1, x) is convex in the state, more extreme
states should induce higher actions. B, In the state-independent sender case, when the re-
ceiver’s marginal utility u(y, x) is more convex in the state at higher actions, more extreme
states should induce higher actions.
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be optimal are satisfied if and only if Vy is convex in x.28 To see why, note
that for any strictly single-peaked triple (y1, x1), (y2, x2), (y1, x3), the pertur-
bation that moves mass on x1 and x3 from y1 to y2 and moves mass on x2 in
the opposite direction, so as to hold fixed the receiver’s marginal utility
conditional on being recommended either action, has the effect of also
holding fixed the probability of each recommendation, while spreading
out the state conditional on action y2 and concentrating the state condi-
tional on action y1. This perturbation is profitable when the difference
V (y2, x) 2 V (y1, x) is convex in x, which holds whenever Vy is convex in x.
In the state-independent sender case, we have Vyx(y2, x)=ux(y1, x) 5 0,

so our sufficient conditions for single-dipped disclosure to be optimal are
satisfied if and only if ux is log-supermodular in (y, x), or equivalently u is
more convex in x at higher actions y.29 To see why, note that for any strictly
single-peaked triple (y1, x1), (y2, x2), (y1, x3) , the perturbation that moves
mass on x1 and x3 from y1 to y2 andmoves mass on x2 in the opposite direc-
tion, so as to hold fixed the receiver’s marginal utility conditional on
being recommended y1 as well as the total probability of each recom-
mendation, has the effect of increasing the receiver’s marginal utility
conditional on being recommended y2. This follows because, by log-
supermodularity of ux, for the receiver’s expected marginal utility the
marginal rate of substitution between “shifting weight from x1 to x2”
and “shifting weight from x2 to x3” is higher at y1 than y2. Finally, when
V is state-independent, this perturbation increases the sender’s expected
utility.30

As we explain in section VII, there are close antecedents to the con-
ditions in theorem 4 for the linear receiver and state-independent sender
cases, in nonpersuasion settings that nonetheless fall in our general opti-
mal productive transport framework. In particular, results in the MOT lit-
erature (e.g., theorem 6.1 of Beiglböck and Juillet 2016) can be translated
to our framework to imply the linear receiver case of theorem 4, while re-
sults in the gerrymandering literature (lemma 1 of Friedman and Holden
2008) can be translated to our framework to imply the state-independent
sender case of theorem 4. Theorem 4 thus unifies and generalizes these
disparate contributions.

28 In the separable and translation-invariant subcases, convexity of Vy simplifies to con-
vexity of w and P 0, respectively.

29 In the separable and translation-invariant subcases, log-supermodularity of ux simpli-
fies to 2I 0(x)2 ≥ I (x)I 00(x) and log-concavity of T 0, respectively.

30 In the linear receiver and state-independent sender cases, the sufficient conditions for
the optimality of strictly single-dipped disclosure in theorem 4 are “almost necessary,” be-
cause the condition jSj ≠ 0 on Y � ½0, 1� implies that FSF has a constant sign on Y � ½0, 1�,
which can be shown to be equivalent to strict convexity of Vy in the linear receiver case, and
to strict log-supermodularity of ux in the state-independent sender case. By theorem 2, a
necessary condition for the optimality of strictly single-dipped disclosure is that jSj ≠ 0
on the restricted domain where x1 < x(y) < x3.
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We also establish an additional result in appendix B: under our condi-
tions for strictly single-dipped disclosure to be optimal (and a regularity
condition), the optimal signal is unique.31

VI. Full Disclosure and Negative
Assortative Disclosure

While single-dippedness is an important property, it remains important
to fully characterize optimal signals when this is tractable.32 The current
section does this for the polar cases of “maximum” and “minimal” pair-
wise disclosure. The former case corresponds to full disclosure, where
each state is disclosed; while the latter case corresponds to negative assor-
tative disclosure, where all states are paired in a negatively assortative
manner, so all posteriors can be ordered from least to most extreme.
Here our results on full disclosure extend existing results, whereas our
results on negative assortative disclosure are entirely novel.33

A. Full Disclosure

Full disclosure is the (unique) signal t where every m ∈ supp(t) is
degenerate.
If for all states x1 and x2, and all probabilities r, the sender prefers to

split the posterior m 5 rdx11(1 2 r)dx2 into degenerate posteriors dx1
and dx2 , then the sender prefers full disclosure to any pairwise signal.
Since pairwise signals are without loss by theorem2, full disclosure is then
optimal. Conversely, if the sender strictly prefers not to split m 5 rdx11
(1 2 r)dx2 into dx1 and dx2 for some states x1 and x2 and some probability
r, then the sender strictly prefers the pairwise signal that differs from
full disclosure only in that it pools states x1 and x2 into m; so full disclosure
is not optimal.34 Recalling that belief m 5 rdx11(1 2 r)dx2 induces action
g(m) satisfying ru(g(m), x1)1(1 2 r)u(g(m), x2) 5 0, weobtain the follow-
ing result.

31 This result is somewhat akin to Brenier’s theorem in optimal transport, which shows
that the optimal transport plan is unique under a suitable complementarity-type condi-
tion, called the twist or generalized Spence-Mirrlees condition (Brenier 1991; Gangbo
and McCann 1996; or see sec. 1.3 in Santambrogio 2015).

32 Recall that many different disclosure patterns can be single-dipped, as illustrated in
fig. 2.

33 In the context of partisan gerrymandering, Kolotilin and Wolitzky (2024a) provide
conditions under which the disclose-pair pattern illustrated in fig. 2D is optimal in the
state-independent sender case.

34 This argument is valid when f has finite support. The general case (theorem 5) uses
duality and is adapted from part 2 of proposition 1 in Kolotilin (2018); we give a slightly
simpler proof and also establish uniqueness.

persuasion and matching 1355



Theorem 5. Full disclosure is optimal if and only if, for all m 5
rdx1 1(1 2 r)dx2 with x1 < x2 in X and r ∈ (0, 1), we have

rV (g(m), x1)1(12 r)V (g(m), x2) ≤ rV (g(dx1 ), x1)1(12 r)V (g(dx2 ), x2):

(7)

Moreover, full disclosure is uniquely optimal if (7) holds with strict in-
equality for all such m.
In the linear case, condition (7) holds if and only if V is convex in y.

In the state-independent sender case, condition (7) simplifies as follows:
Corollary 2. In the state-independent sender case, full disclosure

is optimal if and only if, for all m 5 rdx11(1 2 r)dx2 with x1, x2 ∈ X and
r ∈ (0, 1), we have

V g mð Þð Þ ≤ rV g dx1ð Þð Þ 1 1 2 rð ÞV g dx2ð Þð Þ: (8)

In a classical one-to-one matching model, Becker (1973) showed that
if the utility from matching two types h(x1, x2) is supermodular, then it
is optimal to match like types. Legros and Newman (2002) refer to this
extreme form of positive assortative matching as “segregation.” Their
propositions 4 and 9 show that segregation is optimal if and only if
h(x1, x1) 1 h(x2, x2) ≥ 2h(x1, x2) for all x1, x2 (which is a strictly weaker
property than supermodularity). In the persuasion setting, segregation
corresponds to full disclosure. Note that if we fix r 5 1=2 and let
h(x1, x2) 5 V (g(dx1=2 1 dx2=2)), then (8) reduces to Legros and New-
man’s condition. Intuitively, full disclosure is “less likely” to be optimal in
persuasion than segregation is in classical matching, because in persuasion
the designer has an extra degree of freedom r in designing matches.
In the linear receiver case, there is a simple sufficient condition for (7).
Corollary 2’. In the linear receiver case, full disclosure is optimal

if V(y, x) is convex in y and satisfies V (x1, x2) 1 V (x2, x1) ≤ V (x1, x1)1
V (x2, x2) for all x1, x2 ∈ X .

A sufficient condition for V (x1, x2) 1 V (x2, x1) ≤ V (x1, x1) 1 V (x2, x2)
is supermodularity of V: for all x1 < x2 and y1 < y2, V (y1, x1)1
V (y2, x2) ≥ V (y1, x2) 1 V (y2, x1). Thus, in the linear receiver case, full
disclosure is optimal whenever the sender’s utility is convex in y and
supermodular in (y, x). This sufficient condition for full disclosure gen-
eralizes that given by Rayo and Segal (2010) for the separable subcase.35

In addition, in appendix B we show that when the prior has full sup-
port and the twist condition holds, full disclosure is uniquely optimal
whenever it is optimal.

35 Their condition is that w is increasing in x and G is convex in y, where
V (y, x) 5 w(x)G(y). In the sub-subcase with G(y) 5 y, (7) holds if and only ifw is increas-
ing in x, because (7) simplifies to r(1 2 r)(w(x2) 2 w(x1))(x2 2 x1) ≥ 0.
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B. Negative Assortative Disclosure

A pairwise signal t is “negative assortative” if the supports of any m,
m0 ∈ supp(t) are nested: that is, denoting supp(m) 5 fx1, x2g and
supp(m0) 5 fx 0

1, x
0
2g, where without loss x1 ≤ x2 and x 0

1 ≤ x 0
2, we have either

x1 ≤ x 0
1 ≤ x 0

2 ≤ x2 or x 0
1 ≤ x1 ≤ x2 ≤ x 0

2. We also apply the same definition
to an arbitrary set of posteriors M ⊂ Δ(X ) by replacing supp(t) with M.
In particular, a strictly single-dipped contact set Λ is negative assortative
if x1 : YΛ → X is decreasing and x2 : YΛ → X is increasing.36

Themain result of this section is that if strictly single-dipped disclosure
is optimal and the sender strictly prefers to pool any two states, then neg-
ative assortative disclosure is optimal. Moreover, if the prior has a density,
then the optimal signal is unique (by theorem 7 in app. B) and is charac-
terized as the solution to a system of two ordinary differential equations.
To see the intuition, note that if strictly single-dipped disclosure is op-

timal, then any two pairs of pooled states {x1, x3} and {x 0
1, x

0
3} with x1 < x3,

x 0
1 < x 0

3, and x1 ≤ x 0
1, must be either ordered (i.e., x1 < x3 ≤ x 0

1 < x 0
3) or

nested (i.e., x1 ≤ x 0
1 < x 0

3 ≤ x3). This follows because if the pairs overlap
(i.e., x1 < x 0

1 < x3 < x 0
3), then either (x1, x 0

1, x3) or (x
0
1, x3, x

0
3), together with

the corresponding actions, would form a single-peaked triple. Hence, for
any pair of pooled states (x1, x3), there must exist a disclosed state
x2 ∈ (x1, x3): intuitively, theremust exist pairs of pooled states in the inter-
val (x1, x3) that are closer and closer together, until the pair degenerates
into a single disclosed state. Therefore, if any two pairs of pooled states
{x1, x3} and {x 0

1, x
0
3} are ordered, there would exist two distinct disclosed

states x2 ∈ (x1, x3) and x 0
2 ∈ (x 0

1, x
0
3). But if the sender strictly prefers to pool

any two states, this is impossible. Finally, if pairs of pooled states cannot
overlap or be ordered, the only remaining possibility is that all pairs of
pooled states are nested: that is, disclosure is negative assortative.37

To derive the equations for the optimal signal, note that if x1 and x2

are differentiable then the posterior m that induces y 5 g(m) equals38

m 5
2f (x1(y))x0

1(y)

2f (x1(y))x
0
1(y) 1 f (x2(y))x

0
2(y)

dx1(y)

1
f (x2(y))x0

2(y)

2f (x1(y))x
0
1(y) 1 f (x2(y))x

0
2(y)

dx2(y):

36 Recall that, as defined in remark 2, x1(y) and x2(y) are the smaller and larger states
that are pooled together to induce action y ∈ YΛ.

37 In this argument, the existence of the two disclosed states relies on the assumption
that supp(f) 5 ½0, 1�. The formal proof relies on complementary slackness.

38 This equation is a version of the Monge-Ampere equation in optimal transport (e.g.,
sec. 1.7.6 in Santambrogio 2015).
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Hence, by (1) and (BP), we have

u(y, x1(y))f (x1(y))x
0
1(y) 5 u(y, x2(y))f (x2(y))x

0
2(y),

or more generally (allowing that x1 and x2 may not be differentiable)

u(y, x1(y))(2df(½0, x1(y)�)) 1 u(y, x2(y))df(½0, x2(y)�) 5 0: (9)

In addition, the sender’s first-order condition (4) gives

v(y, x1(y)) 1 q(y)uy(y, x1(y)) 1 q 0(y)u(y, x1(y)) 5 0,

v(y, x2(y)) 1 q(y)uy(y, x2(y)) 1 q 0(y)u(y, x2(y)) 5 0,

and solving this system of equations gives

d

dy

Vy(y, x1(y))u(y, x2(y)) 2 Vy(y, x2(y))u(y, x1(y))

u(y, x1(y))uy(y, x2(y)) 2 u(y, x2(y))uy(y, x1(y))

� �

5
Vy(y, x1(y))uy(y, x2(y)) 2 Vy(y, x2(y))uy(y, x1(y))

uy(y, x1(y))u(y, x2(y)) 2 uy(y, x2(y))u(y, x1(y))
:

(10)

Finally, the solution to the differential equations (9) and (10) must sat-
isfy the boundary conditions

(x1(�y), x1(
�
y), x2(

�
y), x2(�y))5 (0, x(

�
y), x(

�
y), 1), (11)

where
�
y 5 min YΛ and �y 5 max YΛ, because the lowest induced action

�
y

is induced at the disclosed state x(
�
y) 5 x1(

�
y) 5 x2(

�
y), and the highest

induced action �y is induced at states 0 5 x1(�y) and 1 5 x2(�y).39

Theorem 6. Assume that X 5 ½0, 1�. If Λ is strictly single-dipped and
for all x1 < x2 there exists r ∈(0, 1) such that

rV (g(m), x1)1(1 2 r)V (g(m), x2)

> rV (g(dx1), x1)1(1 2 r)V (g(dx2), x2),
(12)

with m 5 rdx1 1(1 2 r)dx2 , then Λ is negative assortative. Moreover, if
the prior f has a density f, then the optimal signal is unique, and the

39 In the linear receiver case, (10) simplifies to

d

dy
Vy(y, x1(y))

x2(y) 2 y

x2(y) 2 x1(y)
1 Vy(y, x2(y))

y 2 x1(y)

x2(y) 2 x1(y)

� �

5 2
Vy(y, x2(y)) 2 Vy(y, x1(y))

x2(y) 2 x1(y)
:

Geometrically, this says that the slope of the curve g(m)↦ Em½Vy(g(m), x)� is equal to the neg-
ative of the slope of the secant passing through the points (x1(g(m)), Vy(g(m), x1(g(m))))
and (x2(g(m)), Vy(g(m), x2(g(m)))). Nikandrova and Pancs (2017) derive this condition
for the separable sub-subcase with Vy(y, x) 5 w(x).
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functions x1 and x2 are continuous and solve the system of differential
equations (9) and (10), with boundary conditions (11).
Like equation (7) in section VI.A, equation (12) simplifies in special

cases. In the linear case, (12) holds if and only if V is strictly concave
in y.40 In the state-independent sender case, it holds if and only if
V (g(m)) > rV (g(dx1))1 (1 2 r)V (g(dx2 )). In the linear receiver case, it
holds if V(y, x) is concave in y and satisfies V (x1, x2) 1 V (x2, x1) >
V (x1, x1) 1 V (x2, x2) for all x1 < x2; a sufficient condition for the latter
property is strict submodularity of V. These conditions generalize the
sufficient condition for pooling given by Rayo and Segal (2010) for the
separable subcase.41

We can also give primitive conditions on V and u for (12) to hold and
hence for the unique optimal signal to be negative assortative.
Corollary 3. Assume that the condition for strict single-dippedness

given in theorem 4 holds. Then for all x1 < x2, there exists r ∈(0, 1) such
that (12) holds if and only if for all y ∈ Y ,

Vyy(y, x(y)) ≤
Vy(y, x(y))uyy(y, x(y))

uy(y, x(y))

1 2
Vyx(y, x(y))uy(y, x(y)) 2 Vy(y, x(y))uyx(y, x(y))

ux(y, x(y))
:

(13)

Equation (13) is a local necessary condition for (12): if (13) fails, then
(12) also fails for x1 < x2 sufficiently close to x(y). When the condition
for strict single-dippedness holds, this local necessary condition turns
out to be globally sufficient for (12). Equation (13) simplifies dramati-
cally in some special cases. In the linear receiver case, (13) simplifies
to Vyy(y, y) 1 2Vyx(y, y) ≤ 0; in the translation-invariant subcase of the lin-
ear receiver case, this simplifies further to P 00(0) ≥ 0. In the separable (re-
spectively, translation-invariant) subcase of the state-independent sender
case, (13) simplifies to Vyy(y)=Vy(y) ≤ 2I 0(y)=I (y) (respectively, Vyy(y)=
Vy(y) ≤ T 00(0)=T 0(0)).

In appendix D, we give three examples of optimal single-dipped nega-
tive assortative disclosure. Example 1 illustrates how the differential
equations (9) and (10) can sometimes be explicitly solved to find the op-
timal signal. Example 2 characterizes the optimal signal in the quantile
sub-subcase. In the quantile sub-subcase, our sufficient conditions for
strictly single-dipped disclosure to be optimal are not satisfied, and there
are multiple optimal signals; however, one optimal signal is strictly

40 In the linear case, V is strictly concave if and only if no disclosure is uniquely optimal
for all priors, by corollary 1 in Kolotilin, Mylovanov, and Zapechelnyuk (2022).

41 Their condition is that w is strictly decreasing in x and G is concave in y, where
V (y, x) 5 w(x)G(y). In the sub-subcase with G(y) 5 y, (12) holds if and only if w is strictly
decreasing in x.
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single-dipped negative assortative. Finally, example 3 illustrates that in
some cases the unique optimal signal randomizes conditional on the state,
even when the prior is atomless.42

VII. Optimal Productive Transport:
Theory and Applications

Wenow give a general interpretation of our framework in terms of assign-
ing inputs to productive units and describe the implications of our results
for matching, option pricing, and partisan gerrymandering, as well as
some specific persuasion models. We pay particular attention to the im-
plications of single-dippedness summarized in table 1 in the introduction.

A. Optimal Productive Transport

Our signal-based primal problem (P)may be generalized as follows: given
a distribution f ∈ Δ(½0, 1�) with support supp(f) 5 X of inputs x, find
a distribution t ∈ Δ(Δ(X )) of productive units m ∈ Δ(X ) to

maximize 

ð
Δ(X )

ð
X

V (~g(m), x)dm(x)dt(m)

subject to 
ð
Δ(X )

mdt(m) 5 f,

where ~g : Δ(X )→ Y is an arbitrary production function that specifies the
output y produced by unit m.43 This optimal productive transport prob-
lem is the same as (P), except that the value of an arbitrary production
function ~g(m) is not necessarily given by the first-order condition (1) for
some function u.
But now suppose that ~g satisfies the following two properties:

1. Betweenness.—For any m, h ∈ Δ(X ) satisfying ~g(m) < ~g(h), and any
r ∈(0, 1), we have ~g(m) < ~g(rh1 (1 2 r)m) < ~g(h).

2. Continuity.—~g is continuous on Δ(X).

The key property here is the first one, which says that mixing two units
produces an output in between those produced by each of them in isola-
tion. The following result—which adapts propositionA.1 ofDekel (1986)—
shows that these properties ensure the existence of a function u such

42 In contrast, Zeng (2023) shows that there is always a deterministic optimal signal in
the separable subcase of the linear receiver or state-independent sender case.

43 The interpretation of the assumption that the domain of ~g is probability measures on
X rather than arbitrary measures is that production exhibits constant returns to scale, so
nothing is gained by varying the scale of a productive unit.
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that ~g is given by (1). Thus, under betweenness and continuity, the
optimal productive transport problem is the same as our persuasion
problem.
Proposition 1. A function ~g satisfies betweenness and continuity

if and only if there exists a continuous function u : Y � X →R such that,
for any m ∈ Δ(X ),ð

X

u(y, x)dm(x)5(<)0⟺y 5 (>)~g(m):

In the persuasion context, the function u in proposition 1 is the receiv-
er’s marginal utility. More generally, u(y, x) can be viewed as a measure of
the “efficacy” of input x in the production of output y. For the remainder
of this section, we assume betweenness and continuity, as well as that
some such u satisfies assumptions 1–4.
The general interpretation of the signal-based primal problem (P) is

that a planner obtains utility V(y, x) from using input x in the production
of output y and assigns inputs to productive units according to a produc-
tion plan t ∈ Δ(Δ(X )) to maximize the expectation of V(g(m), x). The
corresponding interpretation of the signal-based dual problem (D) is
that there is a decentralized economy with price p(x) attached to input
x, where the zero-profit condition (ZP) says that an entrepreneur who ob-
tains utility V(y, x) from using input x in the production of output y can-
not create a unit m ∈ Δ(X ) that leaves her with a positive utility after pay-
ing for its inputs.
More precisely, a pair (t, p) ∈ Δ(Δ(X )) � L(X ) is a competitive equi-

librium if

(i) all inputs are assigned to productive units:
Ð
Xmdt(m) 5 f;

(ii) operating units make zero profits:
Ð
X p(x)dm(x) 5 W (m) for all

m ∈ supp(t);
(iii) no entrant can make strictly positive profits:

Ð
X p(x)dm(x) ≥

W (m) for all m ∈ Δ(X ).

Then, by strong duality (lemma 1), we have
Remark 3. A competitive equilibrium exists, and a pair (t, p) is a

competitive equilibrium if and only if t solves (P) and p solves (D).
We will make use of the interpretation of optimal plans and prices as

competitive equilibria in the matching context in section VII.B.
Similarly, the general interpretation of the outcome-based primal prob-

lem (P’) is that a planner chooses an outcome p ∈ Δ(Y � X ) tomaximize
her expected utility, subject to the constraints that all inputs are utilized
and that each output y is produced by a unit m satisfying g(m) 5 y. The cor-
responding dual can again be interpreted as a decentralized economy,
where now the zero-profit condition (ZP’) says that an entrepreneur
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who produces any output y cannot profitably employ any input in the pro-
duction of this output, after accounting for the input’s price, p(x), and
the marginal effect of its use on the output, q(y)u(y, x). Finally, comple-
mentary slackness (theorem1) says that any entrepreneur whobreaks even
must employ only inputs that satisfy (ZP’) with equality.

B. Matching with Peer Effects

Assigning workers with heterogeneous abilities to firms with workplace
peer effects (i.e., intrafirm spillovers) is an important topic in labor eco-
nomics (Kremer and Maskin 1996; Saint-Paul 2001; Eeckhout 2018;
Boerma, Tsyvinski, and Zimin 2025). In Saint-Paul (2001), there is a con-
tinuum of workers indexed by ability x ∈ ½0, 1�. The population distribu-
tion of x is f, with support X ⊂ ½0, 1�. Workers sort into firms, which are
ex ante homogeneous and face constant returns to scale, so that a firm
can be identified with its distribution of workers m ∈ Δ(X ). Workplace
peer effects depend on the mean worker ability in a firm, g(m) 5 Em½x�,
so the output of a worker with ability x in firm m can be written as
V(g(m), x). The planner’s problem of assigning workers to firms to maxi-
mize total output is thus precisely (P), in the linear receiver case where
g(m) 5 Em½x�. Moreover, the problem of finding competitive equilibrium
wages p(x) for workers with ability x (where, as in sec. VII.A, a competi-
tive equilibrium is an assignment of workers to firms and wages such that
operating firms make zero profits and no entrant can make strictly posi-
tive profits) is precisely (D). In this context, lemma 1 says that a compet-
itive equilibrium exists and maximizes total output.
Saint-Paul (2001) considered the special case of this model where

V (y, x) 5 xG(y) for an increasing function G. In this case, the total out-
put of a firm m equals Em½x�G(Em½x�). Since this is a function only of Em[x],
Saint-Paul (2001) coincides with the linear case of our model. We now
summarize the implications of our results for the general linear receiver
case of ourmodel in the worker assignment context.We pay special atten-
tion to the separable case where V (y, x) 5 w(x)G(y) for increasing func-
tions w and G, which may be particularly natural in this context.
In the worker assignment context, an assignment is pairwise if each

firm contains at most two worker types, and a pairwise assignment is strictly
single-dipped if firms with more heterogeneous workers have higher av-
erage worker ability. Since we are in the linear receiver case, theorem 4
implies that a strictly single-dipped assignment is optimal whenever Vy

is strictly convex in x—or, in the separable case, w is strictly convex. Intu-
itively, Vy is the marginal benefit of having higher-ability coworkers, so
when this is convex in a worker’s own ability, it is optimal for firms where
the distribution of worker abilities is more spread out to have higher av-
erage worker ability. Moreover, when in addition V is strictly increasing in
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both arguments and convex in x, firms withmore heterogeneous workers
also produce higher output, as if Em½x� 5 y < y0 5 Em0 ½x� and supp(m0) is
more spread out than supp(m), then44

Em½V (y, x)� < Em½V (y0, x)� < Em0 ½V (y0, x)�:
Thus, in this case firms with more heterogeneous workforces are more
productive and hence also pay higher average wages (by zero profit).
Our conditions for full disclosure (i.e., segregation, where each firmhas

a homogeneous workforce) and negative assortative disclosure/matching
(where all firms can be ordered from least to most heterogeneous) are
also interesting in the worker assignment context. By corollary 2’, segrega-
tion is optimal if V is convex in y and supermodular—or, in the separable
case, G is convex. On the other hand, by corollary 3, negative assortative
matching is optimal if Vy is strictly convex in x and Vyy 1 2Vyx ≤ 0—or, in
the separable case, w is strictly convex and w(x)G 00(y) 1 2w 0(x)G 0(y) ≤ 0.
Intuitively, these results say that segregation is optimal if peer effects are
convex and that negative assortative matching is optimal if single-dipped
assignment is optimal and peer effects are sufficiently concave.
We also note that p(x) is convex whenever V is convex in x—or, in the

separable case, w is convex. This follows because p(x) 5 supy∈Y V (y, x)1
q(y)(x 2 y), so if Vxx > 0 then p is the supremum of a set of convex func-
tions. Recalling that p(x) is the equilibriumwage of a worker with ability x,
this says that wages rise more than one-for-one with ability. This result
reflects the fact that higher-ability workers are not only better workers,
but also better coworkers.
A model that is equivalent to worker-firmmatching can capture the as-

signment of students to schools with peer effects, or more generally the
assignment of heterogeneous agents to clubs. In Arnott and Rowse
(1987), there is a continuum of students indexed by ability x, who must
be assigned to ex ante identical schools, which can be identified with
their student bodies m ∈ Δ(X ). A student with ability x who attends a
school m attains an education that she values at V (g(m), x), where again
g(m) 5 Em½x�. Arnott and Rowse (1987) study the planner’s problem of
assigning students to schools to maximize total educational attainment:
this problem is equivalent to the linear receiver case of (P). The “decen-
tralized” version of this problem is considered by Epple and Romano
(1998), who study competitive equilibrium in amarket for private school-
ing, where a school m with mean student ability y 5 g(m) charges tuition
t(y, x) to students of ability x. Here, a competitive equilibrium may be

44 Here, the first inequality follows because Vy > 0, and the second inequality follows be-
cause Vx , Vxx > 0 and m0 can be obtained from m by increasing its mean and then taking a
mean-preserving spread (i.e., m0 is greater than m in the increasing convex order).
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defined precisely as in section VII.A, with the interpretation that p(x) is
the equilibrium utility of a student with ability x and that the tuition
charged to a student with ability x to attend a school with mean student
ability y is t(y, x) 5 V (y, x) 2 p(x). (The assumption that schools take
student utility levels as given when setting tuition is called “utility taking”
in the literature on club economies (e.g., Ellickson et al. 1999.) In this
context, lemma 1 says that a competitive equilibrium exists and maxi-
mizes total educational attainment.45

The conditions on V under which an optimal assignment of students
to schools is single-dipped, segregation, or negative assortative matching
are the same as in the worker assignment context. Indeed, bearing in
mind that p(x) is the equilibrium utility of an agent with ability x in either
model—so that the wage of a worker with ability x is p(x), and the tuition
paid by a student with ability x who attends a school with mean ability y
is V (y, x) 2 p(x)—the models are identical. In particular, if Vy is strictly
convex in x, then a strictly single-dipped assignment is optimal, so that
schools with more heterogeneous student bodies are more desirable
for all students.
The outcome-based dual (D’) has a particularly natural interpretation

in the student assignment/club economy setting. In a competitive equi-
librium, a school with mean student ability y charges tuition t(y, x) 5
q(y)(y 2 x) to students with ability x. (Thus, a school subsides students
with above-average ability and charges students with below-average abil-
ity.) A student with ability x attends the school y that gives her the highest
utility, p(x) 5 supy∈Y V (y, x) 2 q(y)(y 2 x). All operating schools break
even, and no entrepreneur can turn a positive profit by starting a new
school.
Yet another interpretation of the model covers peer effects in residen-

tial choice: de Bartolome (1990), Benabou (1996), Becker and Murphy
(2000), and Durlauf (2004) consider residents with binary ability x who
choose to live in one of two neighborhoods of fixed size. A resident with
ability x who lives in a neighborhood with a fraction y of high-ability res-
idents obtains utility V(y, x). These papers study the planner’s problem of
assigning residents to neighborhoods to maximize total utility and con-
trast the solution with the competitive equilibrium outcome when real es-
tate prices cannot depend on the purchaser’s ability. Our model extends
this setting to the case of a continuum of ability levels and (potentially) a
continuum of neighborhoods, where a resident with ability x who lives
in a neighborhood with a distribution of residents m ∈ Δ(X ) obtains

45 Arnott and Rowse (1987) additionally endogenize public spending on schools, while
Epple and Romano (1998) let students differ in income as well as ability. Arnott and Rowse
(1987) focus on the Cobb–Douglas utility function V (y, x) 5 xayb and provide conditions
for the optimality of segregation (“perfect streaming”) or no disclosure (“completemixing”).
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utility V (g(m), x), with g(m) 5 Em½x�. Our condition for segregation to be
optimal—that V is convex in y and supermodular—sharpens results in this
literature.46 Our condition for strict single-dippedness—that Vy is strictly
convex in x—has no analogue in the literature (which assumes binary
types). Finally, remark 3 shows that a competitive equilibrium is efficient
if real estate prices can depend on the purchaser’s ability. In such an
equilibrium, the price for a resident with ability x to buy a house in a
neighborhood with mean ability y is V (y, x) 2 p(x) 5 q(y)(y 2 x).47

C. Option Pricing

In mathematical finance, the literature on martingale optimal transport
(e.g., Beiglböck, Henry-Labordère, and Penkner 2013; Galichon, Henry-
Labordère, and Touzi 2014; Beiglböck and Juillet 2016) studies the fol-
lowing problem. An underlying asset will be marketed in two future peri-
ods, 1 and 2. In period 0, an exotic option is for sale, which will pay V(y, x)
if the realized asset price is y in period 1 and x in period 2. An analyst
knows the marginal distributions of y and x, but her only information
regarding their joint distribution is that it satisfies E½xjy� 5 y for every y.
The interpretation of this assumption is that there are liquid markets
for European call options on the asset price in each period, from which
the analyst can infer the marginal distributions of the asset price (by
Breeden andLitzenberger 1978); and the analyst believes that themarket
satisfies no-arbitrage, which implies that the asset price is amartingale un-
der the risk-neutral measure. The analyst’s problem is to find the joint
distribution p ∈ Δ(Y � X ) that maximizes the expected value of the op-
tion (and, thus, themaximumoption price consistent with no-arbitrage),
subject to the two marginal constraints and the martingale constraint.
Now consider the variant of this problem where the marginal distribu-

tion of y is also unknown. The interpretation is that there is a liquid mar-
ket for call options only on the period 2 asset price: for example, perhaps
the asset is a share in a firm that is expected to go public after period 1,
and there are only liquid optionsmarkets for the prices of publicly traded
firms. Then the analyst’s problem of determining the maximum option
price, subject to constraint that the marginal distribution of the period 2
price x is f, and the martingale constraint E½xjy� 5 y, is precisely (P’), in

46 The closest point in the literature seems to be an observation by Benabou (1996, 249)
that Vyy > 0 and Vyx > 0 both favor segregation.

47 The above models all feature linear peer effects: g(m) 5 Em½x�. Boucher et al. (2024)
consider a model of nonlinear peer effects where g(m) 5 h21(Em½h(x)�) and h is a power
function. In our setting, this model—along with the more general one where u(y, x) 5
h(x) 2 h(y) for any strictly increasing function h, which yields peer effect g(m) 5
h21(Em½h(x)�)—is equivalent to the linear peer effect (linear receiver) case, up to the change
of variables ~x 5 h(x) and ~y 5 h(y).
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the linear receiver case where g(m) 5 Em½x�. Lemma 1 establishes strong
duality for this problem.48

In this context, the optimal dual variables (p, q) have an important in-
terpretation. Recall that the option to be priced pays V(y, x) when the as-
set price is y in period 1 and x in period 2. An alternative to buying this
exotic option is to buy a simple option that pays p(x) when the period 2
asset price is x, and in addition to plan to sell q(y) units of the asset itself
in period 1 when the period 1 asset price is y. Since selling q(y) units at
price y yields a profit of q(y)(y 2 x) when the period 2 asset price turns
out to be x, this alternative strategy is sure to outperform—or “super-
replicate”—the exotic option if and only if

p(x) 1 q(y)(y 2 x) ≥ V (y, x)  for all (y, x) ∈ Y � X :

Note that this condition is precisely (ZP’). Thus, lemma 1 implies that
the maximum option price can be calculated as either Ep½V (y, x)� under
the joint distribution of asset prices p that solves (P’) (i.e., the maximum
expected value of the exotic option), or as Ef[p(x)], for the simple op-
tion payouts p(x) that solve (D’) (i.e., the price of the cheapest strategy
that super-replicates the exotic option).
In the option pricing context, a joint distribution of asset prices is

pairwise if it is a binomial tree: each period 1 price y can be followed by
at most two distinct period 2 prices x. A pairwise joint distribution is strictly
single-dipped if more dispersed period 2 prices follow higher period 1
prices: that is, if riskier assets aremore expensive. Since we are in the linear
receiver case, theorem 4 implies that the option price is maximized by a
strictly single-dipped distribution whenever Vy is strictly convex in x. This
condition is known as the martingale Spence-Mirrlees condition in the
MOT literature, which Beiglböck and Juillet (2016), Henry-Labordère
and Touzi (2016), and Beiglböck, Henry-Labordère, and Touzi (2017)
show implies that a strictly single-dipped distribution (which they call a
“left-curtain coupling”) is optimal in the standard MOT problem (where
the period 1 asset price distribution is fixed exogenously).49 Moreover,
by corollary 2’, full disclosure (where x 5 y with probability 1) is optimal
if V is strictly convex in y and supermodular; while corollary 3 implies that

48 The possibility that the period 1 marginal may be unknown and the resulting problem
(P’) are briefly considered in corollary 1.5 of Acciaio et al. (2016). That result establishes
weak duality and primal attainment but not dual attainment, which, as we discuss, is an im-
portant issue.

49 Specifically, Beiglböck and Juillet (2016) show that the unique optimal outcome is
single-dipped in the translation-invariant subcase if P 0 is strictly convex (theorem 6.1)
and in the separable subcase if w is strictly convex (theorem 6.3); while theorem 5.1 in
Henry-Labordère and Touzi (2016) and theorem 3.3 in Beiglböck, Henry-Labordère,
and Touzi (2017) extend this conclusion to the general linear receiver case where Vy is
strictly convex in x. All these papers concern the MOT context, where the distribution
of y is fixed exogenously.
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negative assortative matching (where higher period 1 prices are always
followed by more dispersed period 2 prices, so more expensive assets
are riskier) is optimal if Vy is strictly convex in x and Vyy 1 2Vyx ≤ 0.
The formula for q(y) also has an interesting interpretation in the op-

tion pricing context. By equation (3), for every period 1 price y in the
support of the marginal of an optimal joint distribution p, we have

q(y) 5 Ep½Vy(y, x)jy�:
This is a version of Shephard’s lemma: the amount of the asset sold at
period 1 price y under the cheapest super-replicating strategy equals the
derivative of the option price with respect to y. In addition, in finance
the derivative of the option price with respect to the underlying asset price
is known as the option’s “Delta.” Thus, in the option pricing context, q(y)
is simply Delta.

D. Partisan Gerrymandering

Partisan gerrymandering—where a partisan designer assigns voters to
districts to maximize her party’s seat share—is an important feature of
American politics. Kolotilin and Wolitzky (2024a) develop and calibrate
a model of partisan gerrymandering, which generalizes the leading
earlier models of Owen and Grofman (1988), Friedman and Holden
(2008), and Gul and Pesendorfer (2010). In this model, there is a contin-
uum of voters indexed by their partisanship x ∈ ½0, 1�. The population
distribution of x is f, with support X ⊂ ½0, 1�. The designer chooses a
districting plan t ∈ Δ(Δ(X )) that assigns voters to equipopulous dis-
tricts m ∈ ½0, 1�, prior to the realization of an aggregate shock y ∈ R with
distributionV. The share of type-x voters who vote for the designer’s
party when the aggregate shock takes value y is deterministic and is de-
noted by v(y, x) ∈ ½0, 1�.50 The function v(y, x) is assumed to be strictly
decreasing in y and strictly increasing in x: that is, higher aggregate
shocks are less favorable for the designer, while voters with higher par-
tisanship are more favorable. The designer wins a district m if and only
if she receives a majority of the district vote. Thus, defining u(y, x) ≔
v(y, x) 2 1=2, note that the designer wins a district m if and only if y ≤
g(m), where g(m) is given by (1). The designer thus wins a district m with
probability V(g(m)). Finally, the designer chooses t to maximize her ex-
pected seat share, subject to the constraint that all voters are assigned to
equipopulous districts: that is, Et½m� 5 f.51 The designer’s problem is thus

50 Among other notational differences, the order of the arguments of v is reversed in
Kolotilin and Wolitzky (2024a).

51 As discussed in Kolotilin andWolitzky (2024a), the equipopulation constraint is strictly en-
forced inpractice, while other constraints ondistricting (e.g., geographic continuity of districts)
are often relatively slack and are thus neglected in much of the gerrymandering literature.
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precisely (P), in the state-independent sender case where V (y, x) 5 V (y).
Note that the designer’s preferences are state-independent because she
cares only about the probability of winning each district and not directly
about a district’s composition.
In the gerrymandering context, a districting plan is pairwise if each

district contains at most two voter types, and a pairwise districting plan
is strictly single-dipped if more polarized districts are more favorable for
the designer (i.e., if g(m) > g(m0) for all m, m0 ∈ supp(t) such that supp
(m) contains x1 < x3 and supp(m0) contains x2 ∈(x1, x3).) Since V is state-
independent, theorem 4 implies that strictly single-dipped districting
is optimal whenever ux is strictly log-supermodular. This result general-
izes a main result of Friedman andHolden (2008; their lemma 1), which
shows that strictly single-dipped districting is optimal under an “infor-
mative signal property” that is equivalent to log-supermodularity of
ux.52 As explained in Kolotilin andWolitzky (2024a), the intuition for this
result is that log-supermodularity of ux means that moderate voters
“swing more” with the aggregate shock y than more extreme voters, so
a marginal voter is less likely to be pivotal in a district consisting of mod-
erates than in a district that is evenly divided between left-wing and right-
wing extremists. The designer then optimally exploits this difference in
pivot probabilities by assigning more favorable marginal voters to more
polarized districts: that is, by creating a single-dipped districting plan.
Kolotilin and Wolitzky (2024a) go on to apply the duality and comple-

mentary slackness developed in the current paper to derive further prop-
erties of optimal districting plans. In particular, they give conditions un-
der which optimal districting segregates the strongest opposing voters
(as in “pack-and-crack” districting or the disclose-pair plan illustrated in
fig. 2D) or more moderate voters (as in an alternative plan proposed by
Friedman andHolden [2008], which resembles negative assortative disclo-
sure with an interval of disclosed intermediate states).53

E. Specific Persuasion Models

Our analysis coversmost persuasionmodels with nonlinear preferences con-
sidered to date, including Zhang and Zhou’s (2016) model of information
disclosure in contests; Guo and Shmaya’s (2019) model of persuading
a receiver with affiliated private information; and Goldstein and Leit-
ner’s (2018) model of optimal stress tests. The main results in the latter
two papers show that, respectively, single-peaked and single-dipped neg-
ative assortative disclosure are optimal. In appendix E, wedescribe how

52 Friedman and Holden (2008) additionally assume that there is a finite number of dis-
tricts and that u satisfies a “central unimodality” condition.

53 As argued by Cox and Holden (2011), this is a key question for assessing the likely conse-
quences of restrictions on districting such as those instituted by the Voting Rights Act of 1965.
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our analysis covers these prior models and provides some additional
results.

VIII. Conclusion

This paper has developed a general model of assigning inputs to produc-
tive outputs, which we call optimal productive transport. Our leading ap-
plication is Bayesian persuasion, but the model also covers other applica-
tions including matching, option pricing, and partisan gerrymandering.
In the persuasion context, our substantive results provide conditions for
all optimal signals to be pairwise, for riskier or safer prospects to induce
higher actions, and for full or negative assortative disclosure to be opti-
mal. In some cases, we can characterize optimal signals as the solution
to a pair of ordinary differential equations or even solve them in closed
form. Methodologically, we develop novel duality and complementary
slackness theorems, which form the basis of all of our proofs.
Wemention a few open issues. First, while the persuasion literature has

made progress by allowing unrestricted disclosure policies, the pairwise
signals that we highlight are not always realistic. (For example, in reality
it is probably not feasible to design a stress test that pools only the weakest
and strongest banks.) An alternative, complementary approach is to re-
strict the sender to partitioning the state space into intervals, as in Rayo
(2013) and Onuchic and Ray (2023). An interesting observation is that,
at least in the separable subcase of our model considered by Rayo
(2013) and Onuchic and Ray (2023), our condition (12) is equivalent
to the condition that complete pooling is uniquely optimal amongmono-
tone partitions for all prior distributions. This suggests that, under our
conditions for the optimality of single-dipped/-peaked disclosure, negative
assortative disclosure might be the optimal unrestricted disclosure pol-
icy for all priors if and only if no disclosure is the optimal monotone
policy for all priors.More generally, analyzing the relationshipbetween the
optimal pairwise signals we have characterized and simpler signals such as
monotone partitions is an important direction for future research.
Second, in the informed receiver interpretationof ourmodelmentioned

in section II, our analysis pertains to disclosuremechanisms that donot first
elicit the receiver’s type, or “public persuasion” in the language of Kolotilin
et al. (2017). Public persuasion turns out to be without loss in Kolotilin
et al. (2017), as well as in Guo and Shmaya (2019). It would be interesting
to investigate conditions for the optimality of public persuasion in our
more general model and in particular to see how they relate to our con-
ditions for the optimality of full or negative assortative disclosure.
Third, while we have taken some steps toward fully characterizing opti-

mal signals by deriving the differential equations (9) and (10) and solving
them in a couple examples,muchmore remains to be done. Equations (9)
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and (10) are closely related to the optimality and Monge-Ampere equa-
tions in optimal transport (e.g., sec. 1.7.6 of Santambrogio 2015). The rich
mathematical literature on these equations may hold some insights for
fully characterizing optimal signals in certain settings.
Finally, ourmodel could be generalized to allowmultidimensional states

or actions. We suspect that our results on duality (lemmas 1 and 2), com-
plementary slackness (theorem 1), and pairwise signals (theorem 2) gen-
eralize up to some technicalities.54 Generalizing our other results would
require a more general notion of single-dippedness. With a unidimen-
sional action and a multidimensional state, one can still define a notion
of single-dippedness as inducing higher actions at more extreme states;
withmultidimensional actions, the appropriate generalization is unclear.55

For results on multidimensional persuasion focusing on the linear case,
see Dworczak and Kolotilin (2024).

Appendix A

Characterization of Strict Aggregate Single-Crossing

We present two alternative conditions that are equivalent to strict aggregate
single-crossing of u. Condition 2 is analogous to the “signed-ratio monotonicity”
conditions for weak aggregate single-crossing in theorem 1 of Quah and Stru-
lovici (2012) and corollary 2 of Choi and Smith (2017). We give a shorter proof
based on the optimality of pairwise signals (see app. F). Condition 3 is novel.
It corresponds to strict monotonicity of u (i.e., uy(y, x) < 0), up to a normalizing
factor g(y) > 0.

Lemma 3. Let assumption 1 hold. The following statements are equivalent:

1. Assumption 2 holds.
2. For all x, x0, and y, we have

u(y, x) 5 0⟹ uy(y, x) < 0, (14)

u(y, x) < 0 < u(y, x 0)⟹ u(y, x 0)uy(y, x) 2 u(y, x)uy(y, x
0) < 0: (15)

3. There exists a differentiable function g(y) > 0 such that ~u(y, x) 5
u(y, x)=g(y) satisfies ~uy(y, x) < 0 for all (y, x).

Appendix B

Uniqueness

This appendix presents a notable technical result: under a regularity condition,
strict single-dippedness implies that there is a unique optimal signal. It also shows
that conditions for uniqueness are much weaker when full disclosure is optimal.

54 For example, our proof of theorem 1 is facilitated by the existence of a bijection be-
tween actions y and states x(y) such that u(y, x(y)) 5 0 (cf. assumption 4).

55 Possibly relevant recent work on multidimensional martingale optimal transport in-
cludes De March and Touzi (2019) and Ghoussoub, Kim, and Lim (2019).
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We say that a strictly single-dipped setΛ is “regular” if for each y ∈ YΛ, there ex-
ists ε > 0 such that either (i) x1(~y) 5 x2(~y) for all ~y ∈(y 2 ε, y) \ YΛ or (ii) x1(~y) <
x2(~y) for all ~y ∈(y 2 ε, y) \ YΛ. This regularity condition rules out pathological
cases where states switch infinitelymany times frombeing disclosed to being paired.
This condition is satisfied in every example in the literature that we know of.

Theorem 7. If X 5 ½0, 1�, f has a density, and Λ is strictly single-dipped and
regular, then there is a unique optimal signal.

Inmartingale optimal transport, the optimal solution is unique under themar-
tingale Spence-Mirrlees condition (e.g., proposition 3.5 in Beiglböck, Henry-
Labordère, and Touzi 2017), which coincides with our condition for the optimal-
ity of strict single-dippedness in the linear receiver case. The key implication of
theorem 7 is that the optimal marginal distribution of actions is unique. There
is no analogue of this result in martingale optimal transport, where this marginal
distribution is fixed.

To see the intuition for theorem 7, consider the case where f is discrete and x2

is strictly increasing. Let �y 5 maxm∈Λg(m) be the highest action that can be opti-
mally induced. Since Λ is strictly single-dipped, there is a unique posterior �m
in Λ inducing action �y, namely, �m 5 dx2(�y) if x1(�y) 5 x2(�y) and �m 5 �rdx1(�y) 1
(1 2 �r)dx2(�y) where �r ∈(0, 1) is uniquely determined by (1) if x1(�y) < x2(�y). Since
x2 is strictly increasing, for any optimal signal t, the state x2(�y) can only induce
action �y and thus t(�m) 5 f(x2(�y)) if x1(�y) 5 x2(�y) and t(�m) 5 f(x2(�y))=
(1 2 �r) if x1(�y) < x2(�y). Working our way through the support of f from the
highest state to the lowest in this fashion, we obtain the unique value of t(m) for
each m ∈ Λ. When f has a density, the possibility that x2 may be only weakly increas-
ingdoes not threatenuniqueness of theoptimal signal, because the set of states cor-
responding to flat regions of x2 is at most countable and thus has f-measure 0. Fi-
nally, our regularity condition ensures that the above argument extends easily from
the discrete case to the continuous one.

In addition, when the prior has full support and the contact set is pairwise (e.g.,
the twist condition holds), full disclosure is uniquely optimal whenever it is opti-
mal. To see the intuition, suppose full disclosure is optimal, and suppose there is
another optimal signal that pools some states x1 and x2 to induce an action y. Then
the signal that discloses all other states while pooling x1 and x2 to induce y is also
optimal. But then the signal that discloses all other states while pooling x1, x2, and
the third state x(y) ≠ x1, x2 to induce y would also be optimal—but this signal is
not pairwise, which is a contradiction.

Remark 4. Assume that X 5 ½0, 1�. If the contact set is pairwise and full dis-
closure is optimal, then it is uniquely optimal.

Appendix C

Proofs

C1. Proof of Lemma 2

The proof of lemma 2 remains valid without assumption 4 and when X is an ar-
bitrary compact metric space.
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One direction is obvious. If (p, q) is feasible for (D’), then, for all m ∈ Δ(X ), we
have ð

X

p(x)dm(x) ≥
ð
X

(V (g(m), x) 1 q(g(m))u(g(m), x))dm(x)

5

ð
X

V (g(m), x)dm(x) 5 W (m),

so p is feasible for (D).
Suppose now that p is feasible for (D). By (ZP) for m 5 dx , with x ∈ X , we have

p(x) ≥ V (g(dx), x), for all x ∈ X : (16)

For x1, x2 ∈ X and y ∈ Y such that u(y, x1) < 0 < u(y, x2), let

m 5
u(y, x2)

u(y, x2) 2 u(y, x1)
dx1 1

2u(y, x1)

u(y, x2) 2 u(y, x1)
dx2 :

Then g(m) 5 y by (1), so, by (ZP),

p(x1) 2 V (y, x1)

u(y, x1)
≤

p(x2) 2 V (y, x2)

u(y, x2)
, if  u(y, x1) < 0 < u(y, x2): (17)

By (16), it suffices to show that there exists a bounded, measurable q such that
(ZP’) holds for all y ≠ g(dx) or, equivalently, q(y) ∈ ½

�
q(y), �q(y)�, for all y ∈ Y ,

where
�
q and �q are defined by

�
q(y) 5

supx1∈X :u(y,x1)<0

p(x1) 2 V (y, x1)

u(y, x1)
, y > 0,

2∞, y 5 0,

8><
>:

�q(y) 5
inf x2∈X :u(y,x2)>0

p(x2) 2 V (y, x2)

u(y, x2)
, y < 1,

1∞, y 5 1:

8><
>:

That is, it suffices to show that the correspondence Q given by Q (y) 5 ½
�
q(y), �q(y)�,

for all y ∈ Y , admits a bounded, measurable selection q. We now show that there
exists C > 0 such that Q (y) \ ½2C , C � is nonempty valued for all y ∈ Y , so q given
by q(y) 5 arg minr∈Q (y)jr j, for all y ∈ Y , is a required selection, by the measurable
maximum theorem (theorem 18.19 in Aliprantis and Border 2006). By (17), Q(y)
is nonempty for all y ∈(0, 1), so it suffices to show that there exists C > 0 such that

�
q(y) ≤ C and �q(y) ≥ 2C .

Define

~q(y, x) 5

Vy(y, x)

2uy(y, x)
, u(y, x) 5 0,

V (g(dx), x) 2 V (y, x)

u(y, x)
, u(y, x) ≠ 0:

8>>><
>>>:
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Recall that assumption 2 requires that uy(y, x) < 0 when u(y, x) 5 0; so ~q(y, x) is
well-defined. It suffices to show that there exists C > 0 such that j~q(y, x)j ≤ C for
all (y, x) ∈ Y � X , because then, by (16), we have

p(x2) 2 V (y, x2)

u(y, x2)
≥
V (g(dx2 ), x2) 2 V (y, x2)

u(y, x2)
5 ~q(y, x2),        if  u(y, x2) > 0,

p(x1) 2 V (y, x1)

u(y, x1)
≤

V (g(dx1 ), x1) 2 V (y, x1)

u(y, x1)
5 ~q(y, x1),        if  u(y, x1) < 0,

so, by the definition of �q and
�
q , we get that �q(y) ≥ 2C and

�
q(y) ≤ C .

Finally, to show that there exists C > 0 such that j~q(y, x)j ≤ C for all
(y, x) ∈ Y � X , it suffices to show that ~q is continuous on the compact set
Y � X . By Berge’s theorem, g(dx) is continuous in x, as it is a unique maximizer
of a continuous function U (y, x) 5

Ð y

0u(~y, x)d~y. Note that ~q is continuous at each
(y, x) such that u(y, x) ≠ 0, because V, u, and g are continuous. Next, consider
(y, x) such that u(y, x) 5 0, or equivalently y 5 g(dx). For each (y0, x 0) ∈ Y � X ,
there exists ŷ between g(dx 0) and y0 such that

½V (g(dx 0), x 0) 2 V (y0, x 0)�uy(ŷ, x
0) 5 2Vy(ŷ, x

0)u(y0, x 0),

by the mean value theorem applied to the function

½V (g(dx 0), x 0) 2 V (~y, x 0)�u(y0, x 0) 2 ½V (g(dx 0), x 0) 2 V (y0, x 0)�u(~y, x 0),

where the argument ~y is between g(dx 0) and y0. Thus,

~q(y0, x 0) 2 ~q(y, x) 5
Vy(ŷ, x 0)

2uy(ŷ, x
0)
2

Vy(y, x)

2uy(y, x)
:

If (y0, x 0)→(y, x), then (ŷ, x 0)→(y, x), because g(dx) is continuous in x. Hence,
~q(y0, x 0)→ ~q(y, x), because Vy and uy are continuous. This shows that ~q is continu-
ous on Y � X . QED

C2. Proof of Theorem 1

The proof of theorem 1 remains valid if assumption 4 is replaced with the weaker
requirement that u(y, x) satisfies strict single-crossing in x: for all y and x < x 0, we
have u(y, x) ≥ 0⟹ u(y, x 0) > 0.

By lemma 2, there exists q ∈ B(Y ) such that (p, q) is feasible for (D’). Recall that,
under strict single-crossing of u(y, x) in x, for each action y, there is a unique state
x(y) such that u(y, x(y)) 5 0. First, redefine q(y) 5 2Vy(y, x(y))=uy(y, x(y)) for
all y ∈ Y such that p(x(y)) 5 V (y, x(y)). We now show that (p, q) is still feasible
for (D’). Fix any y such that p(x(y)) 5 V (y, x(y)) and any x ∈ X . For any ε ∈ (0, 1),
define yε ∈ Y as a unique solution to (1 2 ε)u(yε, x(y)) 1 εu(yε, x) 5 0. By the
implicit function theorem,

lim
ε↓0

yε 2 y

ε
5

u(y, x)

2uy(y, x(y))
:

By (ZP’), we have
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V (y, x(y)) ≥ V (yε, x(y)) 1 q(yε)u(yε, x(y)) and 

p(x) ≥ V (yε, x) 1 q(yε)u(yε, x):

Adding the first inequality multiplied by 1 2 ε and the second inequality multi-
plied by ε, and taking into account the definition of yε, we get

p(x) ≥ V (y, x) 1
(1 2 ε)½V (yε, x(y)) 2 V (y, x(y))� 1 ε½V (yε, x) 2 V (y, x)�

ε
:

Taking the limit ε→ 0 gives

p(x) ≥ V (y, x) 1
Vy(y, x(y))

2uy(y, x(y))
u(y, x),

showing that (p, q) is still feasible with redefined q.
Thus, (3) holds, by construction, for all degenerate m ∈ Λ. Since, for nonde-

generate m ∈ Λ, (4) integrated over m yields (3), it remains to show that (4) holds
for each nondegenerate m ∈ Λ.

Fix a nondegenerate m ∈ Λ, so that

ð
X

(p(x) 2 V (g(m), x) 2 q(g(m))u(g(m), x))dm(x) 5 0:

Since the integrand is nonnegative and continuous in x, it follows that

p(x) 5 V (g(m), x) 1 q(g(m))u(g(m), x), for all x ∈ supp(m): (18)

Since m is nondegenerate, strict single-crossing of u(y, x) in x implies that there
exist x1, x2 ∈ supp(m) such that x1 < x(g(m)) < x2. Thus, by (ZP’), for every ~y ∈ Y ,
we have

p(x1) 5 V (g(m), x1) 1 q(g(m))u(g(m), x1) ≥ V (~y, x1) 1 q(~y)u(~y, x1):

Therefore, for every ~y > g(m), we have

q(~y) 2 q(g(m))

~y 2 g(m)
≥

1

2u(~y, x1)

V (~y, x1) 2 V (g(m), x1)

~y 2 g(m)
1 q(y)

u(~y, x1) 2 u(g(m), x1)

~y 2 g(m)

� �
:

Since V and u have continuous partial derivatives in y, we have

�
q 0
1(g(m)) ≔ lim inf

~y↓g(m)

q(~y) 2 q(g(m))

~y 2 g(m)
≥ C1,

where

C1 5 2
1

u(g(m), x1)
½Vy(g(m), x1) 1 q(g(m))uy(g(m), x1)� :

Applying a similar argument for x 5 x1 and ~y < g(m), we get

�q 0
2(g(m)) ≔ lim sup

~y↑g(m)

q(~y) 2 q(g(m))

~y 2 g(m)
≤ C1:
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Similarly, considering x 5 x2 with ~y > g(m) and ~y < g(m), we get

�q 0
1(g(m)) ≔ lim sup

~y↓g(m)

q(~y) 2 q(g(m))

~y 2 g(m)
≤ C2,

�
q 0
2(g(m)) ≔ lim inf

~y↑g(m)

q(~y) 2 q(g(m))

~y 2 g(m)
≥ C2,

where

C2 5 2
1

u(g(m), x2)
½Vy(g(m), x2) 1 q(g(m))uy(g(m), x2)�:

In sum, we have

C1 ≤
�
q 0
1(g(m)) ≤ �q 0

1(g(m)) ≤ C2 and C2 ≤
�
q 0
2(g(m)) ≤ �q 0

2(g(m)) ≤ C1:

We see that C1 5 C2 and all four Dini derivatives of q at g(m) coincide, so q has a de-
rivative q 0(g(m)) at g(m) that satisfies q 0(g(m)) 5 C1 5 C2.

Since x1, x2 ∈ supp(m) are arbitrary, (4) holds for all x ∈ supp(m) with
x ≠ x(g(m)). For x ∈ supp(m) with x 5 x(g(m)), (4) holds because, as shown
above, we have that q(g(m)) 5 2Vy(g(m), x(g(m)))=uy(g(m), x(g(m))). QED

C3. Proof of Theorem 3

The proof of theorem 3 remains valid if the condition ux(y, x) > 0 in assump-
tion 4 is replaced with strict single-crossing of u(y, x) in x.

We will prove that Λ is single-dipped, which implies that every optimal signal is
single-dipped. We start with an appropriate version of the theorem of alternative.

Lemma 4. Exactly one of the following two alternatives holds.

1. There exists a > 0 such that aR ≤ 0.
2. There exists b ≥ 0 such that Rb ≥ 0 and Rb ≠ 0.

Proof. Clearly, statements 1 and 2 cannot both hold, because premultiplying
Rb ≥ 0 with Rb ≠ 0 by a > 0 yields aRb > 0, whereas postmultiplying aR ≤ 0
by b ≥ 0 yields aRb ≤ 0 :

Now suppose that statement 1 does not hold. Then there does not exist a ≥ 0
such that a(R 2I ) ≤ (0 2e) where I is an identity matrix and e is a row vector of
ones. Thus, by the theorem of alternative (e.g., theorem 2.10 in Gale 1989),
there exists b ≥ 0 and g ≥ 0 such that (R 2I )T (b g) ≥ 0 and 2eg < 0, which
in turn shows that statement 2 holds. QED

We prove the theorem by contraposition. Suppose that Λ is not single-dipped,
so there exist m1, m2 ∈ Λ and x1 < x2 < x3 such that x1, x3 ∈ supp(m1), x2 ∈ supp(m2),
and g(m1) < g(m2). By strict single-crossing of u(y, x) in x, without loss, we can
assume that x1 < x(g(m1)) < x3, by redefining x1 5 min supp(m1) and x3 5
max supp(m1), if necessary.
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By (ZP’) and theorem 1, we have

V (g(m1), x1) 1 q(g(m1))u(g(m1), x1) ≥ V (g(m2), x1) 1 q(g(m2))u(g(m2), x1),

V (g(m2), x2) 1 q(g(m2))u(g(m2), x2) ≥ V (g(m1), x2) 1 q(g(m1))u(g(m1), x2),

V (g(m1), x3) 1 q(g(m1))u(g(m1), x3) ≥ V (g(m2), x3) 1 q(g(m2))u(g(m2), x3):

By (3), we have, for i 5 1, 2, q(g(mi)) 5 2Emi
½Vy(g(mi), x)�=Emi

½uy(g(mi), x)� > 0,
where the inequality follows from assumptions 2 and 4. Thus, the vector a 5
(1, q(g(m1)), q(g(m2))) is strictly positive and satisfies aR ≤ 0. By lemma 4, there
does not exist a vector b ≥ 0 such that Rb ≥ 0 and Rb ≠ 0, as desired. QED

C4. Proof of Theorem 4

The proof uses the following five lemmas, whose proofs are deferred to appen-
dix F. We start with the second part of the theorem, and we show that Λ is strictly
single-dipped (-peaked), which implies that every optimal signal is strictly single-
dipped (-peaked).

Lemma 5. If uyx(y, x)=ux(y, x) and Vyx(y, x)=ux(y, x) are increasing (decreas-
ing) in x for all y, with at least one of them strictly increasing (decreasing), then
jS j > (<)0 for all y and x1 < x2 < x3 such that x1 < x(y) < x3.

Lemma 6. If uyx(y, x)=ux(y, x) and Vyx(y2, x)=ux(y1, x) are increasing (decreas-
ing) in x for all y and y2 ≥ (≤)y1, with at least one of them strictly increasing (decreas-
ing), then jR j > (<)0 for all x1 < x2 < x3 and all y2 > (<)y1 such that x1 < x(y1) < x3.

Lemma 7. If uyx(y, x)=ux(y, x) is increasing in x for all y, then for all
x1 < x2 < x3 and all y2 > y1 such that x1 < x(y1) < x3, we have

u(y2, x3)u(y1, x1) > u(y2, x1)u(y1, x3),

u(y2, x2)u(y1, x1) > u(y2, x1)u(y1, x2),

u(y2, x3)u(y1, x2) > u(y2, x2)u(y1, x3):

Lemma 8. If Vyx(y2, x)=ux(y1, x) is decreasing in x for all y2 ≤ y1, then for all
x1 < x2 < x3 and all y2 < y1 such that x1 < x(y1) < x3, we have

u(y1, x1)

V (y1, x1) 2 V (y2, x1)
<

u(y1, x2)

V (y1, x2) 2 V (y2, x2)
<

u(y1, x3)

V (y1, x3) 2 V (y2, x3)
:

Lemma 9. Suppose that Vn is a sequence of functions satisfying assumption 1
such that V n

y converges uniformly to Vy, and suppose that the contact sets Λn un-
der Vn are single-dipped (-peaked). Then there exists a single-dipped (-peaked)
optimal signal under V.

Now, the set Λ is single-dipped (-peaked) by theorem 3 with

b5

u(y2, x3)u(y1, x2) 2 u(y2, x2)u(y1, x3)

u(y2, x3)u(y1, x1) 2 u(y2, x1)u(y1, x3)

u(y2, x2)u(y1, x1) 2 u(y2, x1)u(y1, x2)

0
BB@

1
CCA  b 5

u(y2, x1)

V (y2, x1) 2 V (y1, x1)

u(y2, x2)

V (y2, x2) 2 V (y1, x2)

u(y2, x3)

V (y2, x3) 2 V (y1, x3)

0
BBBBBBBB@

1
CCCCCCCCA

0
BBBBBBBB@

1
CCCCCCCCA
,
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as follows from lemmas 6 and 7 (lemmas 6 and 8). Moreover, jsupp(m)j ≤ 2 for
all m ∈ Λ by theorem 2 and lemma 5, showing that Λ is strictly single-dipped
(-peaked).

Finally, we prove the first part of the theorem. Consider Vn such that

V n
y (y, x) 5 Vy(y, x) 1

ðx

0

~v(x)

n
ux(y, ~x)d~x,

where ~v(x) is a continuous, strictly positive, and strictly increasing (decreasing)
function on [0, 1]. Then V n

y (y, x) > 0 because Vy(y, x) > 0 and ux(y, x) > 0 for all
(y, x), by assumption 4. Moreover, for all y2 ≥ (≤)y1,

V n
yx(y2, x)

ux(y1, x)
5

Vyx(y2, x)

ux(y1, x)
1

~v(x)

n

ux(y2, x)

ux(y1, x)

is strictly increasing (decreasing) in x, because ~v(x) is strictly positive and strictly
increasing (decreasing) in x; Vyx(y2, x)=ux(y1, x) is increasing (decreasing) in x;
and ux(y2, x)=ux(y1, x) is increasing in x, since uyx(y, x)=ux(y, x) is increasing (de-
creasing) in x. Thus, by lemma 9, there exists an optimal single-dipped (-peaked)
signal. QED

C5. Proof of Theorem 6

The proof of theorem 6 remains valid if assumption 4 is replaced with strict
single-crossing of u(y, x) in x. Since X 5 ½0, 1�, Λ is strictly single-dipped, and
for all x1 < x2 there exists r ∈ (0, 1) such that (12) holds, it follows that x1(y2) ≤
x1(y1) for all y1 < y2 in YΛ, and thusΛ is negative assortative. Suppose by contradic-
tion that there exist y1 < y2 in YΛ such that x1(y1) < x1(y2). Then x2(y1) ≤ x1(y2),
as otherwise there would exist m1, m2 ∈ Λ such that g(m1) 5 y1 < y2 5 g(m2), and
x1(y1) < x1(y2) < x2(y1) contradicting that Λ is single-dipped. By lemma 13,
there exist y01 ≤ y1 and y02 ≤ y2 in YΛ such that x1(y1) ≤ x1(y01) 5 x2(y01) ≤ x(y1) ≤
x2(y1) ≤ x1(y2) ≤ x1(y02) 5 x2(y02) ≤ x2(y2), and thus y01 ≤ y02. In fact, y01 < y02, as
otherwise we would have x1(y1) ≤ x(y1) 5 x2(y1) 5 x1(y2), which implies x1(y1) 5
x2(y1) 5 x1(y2), contradicting x1(y1) < x1(y2). Thus, denoting x1 5 x(y01) <
x(y02) 5 x2, we have dx1 , dx2 ∈ Λ. For any m 5 rdx11(1 2 r)dx2 with r ∈ (0, 1), we have

p(x1) 5 V (g(x1), x1) ≥ V (g(m), x1) 1 q(g(m))u(g(m), x1),

p(x2) 5 V (g(x2), x2) ≥ V (g(m), x2) 1 q(g(m))u(g(m), x2),

by (ZP) and the definition of Λ. Adding the first inequality multiplied by r and
the second inequality multiplied by 1 2 r, we obtain that (12) fails for all r ∈
(0, 1), yielding a contradiction.

Now assuming that f has a density f and Λ is negative assortative, we will
show that the functions x1 and x2 are continuous and satisfy the differential equa-
tions (9) and (10) and the boundary condition (11). Since the closure of
X | 5 [m∈Λsupp(m) is X 5 ½0, 1�, it follows that the closure of the union of the im-
ages of the functions x1 and x2 must also be equal to [0, 1]. Since x1 is decreasing
and x2 is increasing on the compact domain YΛ, and since x1(y) ≤ x(y) ≤ x2(y)
for all y ∈ YΛ, it follows that x1 and x2 are continuous functions such that
x1(

�
y) 5 x(

�
y) 5 x2(

�
y), x1(y) < x(y) < x2(y) for all y >

�
y in YΛ, x1(�y) 5 0,
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x2(�y) 5 1, and (x1(
�
zi), x2(

�
zi)) 5(x1(�zi), x2(�zi)) for all i, where f(

�
zi ,�zi)gi is an at

most countable set of disjoint open intervals comprising the set ½
�
y, �y� ∖ YΛ. Since

f has a density, the measure of the endpoints of these intervals is zero, and
hence the set of optimal signals is unaffected if we extend the domain of x1

and x2 to [
�
y, �y] by setting x1(y) 5 x1(

�
zi) 5x1(�zi) and x2(y) 5 x2(

�
zi) 5 x2(�zi) for

all y ∈ (
�
zi ,�zi). In sum, without loss of generality, we can assume that x1 and x2

are continuous monotone functions defined on [
�
y, �y] that satisfy (11) and

x1(y) < x(y) < x2(y) for all y ∈ (
�
y, �y�.

Since x1 is continuously decreasing on [
�
y,�y], x2 is continuously increasing on [

�
y,

�y], and f has a density, we can rewrite (OB) for ~Y 5 ½y, y0�, with
�
y ≤ y < y0 ≤ �y,

as ð
y

y0

u(~y, x1(~y))(2df(½0, x1(~y)�)) 1
ð
y

y0

u(~y, x2(~y))df(½0, x2(~y)�) 5 0:

Taking the limit y0 ↓ y, we obtain (9) for all y ∈ ½
�
y, �y�.

By theorem 1, for all y >
�
y in YΛ,

Vy(y, x1(y)) 1 q(y)uy(y, x1(y)) 1 q 0(y)u(y, x1(y)) 5 0,

Vy(y, x2(y)) 1 q(y)uy(y, x2(y)) 1 q 0(y)u(y, x2(y)) 5 0:

Solving for q(y) and q0(y), we get, for all y >
�
y in YΛ,

q(y) 5
Vy(y, x1(y))u(y, x2(y)) 2 Vy(y, x2(y))u(y, x1(y))

u(y, x1(y))uy(y, x2(y)) 2 u(y, x2(y))uy(y, x1(y))
,

q 0(y) 5
Vy(y, x1(y))uy(y, x2(y)) 2 Vy(y, x2(y))uy(y, x1(y))

uy(y, x1(y))u(y, x2(y)) 2 uy(y, x2(y))u(y, x1(y))
,

where the denominators in the expressions for q(y) and q 0(y) are not equal to
0, by assumption 2. Noting that q 0 is the derivative of q gives (10) for all y >

�
y

in YΛ. QED
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