
Online Appendices

D. Examples of Negative Assortative Disclosure

Example 1 (Solving the Differential Equations). Consider the linear receiver case

with Y = X = [1/e, e], f(x) = 1/(2x), and V (y, x) = y/x. We claim that the unique

optimal outcome matches each state x1 ∈ [1/e, 1] with state x2 = 1/x1 with equal

weights, so that the induced action is y = x1/2+1/(2x1). Thus, χ1(y) = y−
√
y2 − 1,

and χ2(y) = y +
√
y2 − 1 for all y ∈ [1, e/2 + 1/(2e)].

Indeed, by Theorem 4, the optimal outcome is strictly single-dipped, since w(x) = 1/x

is strictly convex. By Corollary 3, (12) holds, since w′ < 0. Hence, by Theorem 6, the

optimal outcome is single-dipped negative assortative and satisfies (9)–(11). Now, for

x2 = 1/x1 and y = x1/2 + 1/(2x1), (9) holds because

u(y, x2) =

(
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2

)
= −

(
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dx2
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(
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,

(10) holds because

d

dy

(
w(x1)

1

2
+ w(x2)

1

2

)
=

d

dy

(
1

2x1

+
x1

2

)
=

d

dy
y = 1,

w(x2)− w(x1)

x2 − x1

=
x1 − 1/x1

1/x1 − x1

= −1,

and (11) holds because 1/(1/e) = e and 1/1 = 1.56

Example 2 (Quantile Persuasion). Consider the quantile sub-subcase of the state-

independent sender case, where u(y, x) = 1{x ≥ y} − κ with κ ∈ (0, 1). Let φ have

a density on [0, 1]. Assuming that the receiver breaks ties in favor of the sender, we

have, for x1 < x2,

γ(ρδx1 + (1− ρ)δx2) =

x2, ρ ≤ 1− κ,

x1, ρ > 1− κ.

Note that (12) always holds for ρ ∈ (0, 1− κ). We claim that there exists an optimal

single-dipped negative assortative signal where the induced distribution over actions

α satisfies α([y, 1]) = φ([y, 1])/κ, and the posterior inducing any action y ∈ [y, 1] is

56We can also solve this example by directly applying Theorem 1, because, for q(y) = y, the function
V (y, x) + q(y)u(y, x) = y/x+ y(x− y) is maximized at y = x/2 + 1/(2x) for all x ∈ [1/e, e].
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Figure 5. The Optimal Signal in Example 3

Notes: The three solid line segments depict the graphs of χ1 and χ2.
The dashed line segments indicate pairs of states χ1(y) and χ2(y) that
are optimal to pool to induce action y ∈ (0, 1]. If the prior density
satisfies f(−y) > 3f(3y) for all y ∈ (0, 1], then, for each state x < 0, the
optimal signal randomizes between disclosing x (and inducing action x)
and pooling x with state −3x (and inducing action −x).

(1− κ)δχ1(y) + κδχ2(y), where χ2(y) = y, χ1(y) solves κφ([0, χ1(y)]) = (1− κ)φ([y, 1]),

and y solves κφ([0, y]) = (1 − κ)φ([y, 1]).57 A notable feature of this signal is that,

with the informed receiver interpretation, it would remain optimal even if the sender

knew the receiver’s type and could condition disclosure on it.

Example 3 (A Stochastic Optimal Signal). In the following example, for some priors

negative assortative disclosure is optimal; and for other priors, the unique optimal

signal randomizes conditional on the state, even though the prior is atomless.

Consider the translation-invariant subcase of the state-independent sender case. Let

Y = X = [−1, 3], let φ have a density f with f(−y) ≥ 3f(3y) for all y ∈ (0, 1], let

u(y, x) = T (x−y) with T (0) = 0 and strictly log-concave T ′, and let V (y, x) = T (2y).

With the informed receiver interpretation, this captures a case where, for example,

κ = 1/2, the distribution of ε is N(0, σ2), and the distribution of t is N(0, (σ/2)2).58

57See Appendix F.18 for the proof.
58By symmetry and strict log-concavity of T ′, Vyy(y)/Vy(y) = 2T ′′(2y)/T ′(2y) > (<)T ′′(0)/T ′(0) =
0 for 0 > (<)y, showing that (13) fails for y < 0, and thus Theorem 6 does not apply.
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By Theorem 4, the optimal outcome is strictly single-dipped. Furthermore, we claim

that

χ1(y) =

y, y ∈ [−1, 0],

−y, y ∈ (0, 1],
and χ2(y) =

y, y ∈ [−1, 0],

3y, y ∈ (0, 1],

so that the posterior inducing any action y ∈ [−1, 1] is δχ1(y)/2 + δχ2(y)/2, and the

distribution over actions α has density a given by

a(y) =

6f(3y), y ∈ (0, 1],

f(−y)− 3f(3y), y ∈ [−1, 0).

The unique optimal signal is single-dipped negative assortative iff f(−y) = 3f(3y)

for all y ∈ (0, 1]. In contrast, if f(−y) > 3f(3y) for all y ∈ (0, 1], then each state

x ∈ [−1, 0) is mixed between inducing actions y = x and y = −x.59 See Figure 5.

E. Specific Persuasion Models

This appendix shows how our analysis covers some well-known prior persuasion mod-

els, where single-dipped or single-peaked disclosure is optimal.60

E.1. Contests. Zhang and Zhou (2016) study information disclosure in contests. In

their model, two contestants, A and B, compete for a prize by exerting efforts zA and

zB. The probability that contestant i = A,B wins is zi/(zA + zB). Everyone knows

contestant A’s value vA = 1. Contestant B’s value vB is known to contestant B and

the designer. The sender designs a signal about vB to maximize expected total effort.

It is convenient to parameterize x = 1/
√
vB and y =

√
zA. With this parameteriza-

tion, Zhang and Zhou’s Proposition 1 shows that, given a posterior µ, contestant A

exerts effort z?A = γ(µ)2 determined by Eµ [x− (1 + x2) γ(µ)] = 0, and contestant B

(who knows x) exerts effort z?B(x) = γ(µ)/x− γ(µ)2, so the sender’s expected utility

is z?A + Eµ [z?B(x)] = Eµ [γ(µ)/x]. We thus recover our model with V (y, x) = y/x and

u(y, x) = x− (1 + x2)y.

Zhang and Zhou give results on optimality of pairwise disclosure, full disclosure, and

no disclosure. Our approach easily yields the following result, which additionally gives

59See Appendix F.19 for the proof.
60The applications in this appendix also illustrate some technical points. Appendix E.1 illustrates
how directly applying Theorem 3 can yield weaker sufficient conditions for the optimality of single-
dipped disclosure than those in Theorem 4. Appendices E.2 and E.3 illustrate how our analysis
extends when some of our assumptions are violated: in Appendix E.2, Assumption 3 fails, so the
receiver’s optimal action may be at the boundary and thus violate the first-order condition; in
Appendix E.3, Assumption 4 fails, as the sender only weakly prefers higher actions.
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conditions for optimality of single-dipped/-peaked disclosure and negative assortative

disclosure (which were not considered by Zhang and Zhou).

Proposition 2. In Zhang and Zhou’s contest model where the prior φ has a positive

density on X = [x, x], where 0 < x < x, if x ≥ 1 then the unique optimal signal is

full disclosure; and if x ≤ 1/
√

3 (1/
√

3 ≤ x < x ≤ 1), then the unique optimal signal

is single-dipped (-peaked) negative assortative disclosure.

The proof of single-dippedness/-peakedness uses Theorem 3 with a perturbation that

fixes both actions. In contrast, directly applying Theorem 4 would yield only the

weaker result that single-peaked negative assortative disclosure is optimal if 1/
√

2 ≤
x < x < 1.61

E.2. Affiliated Information. Guo and Shmaya (2019) consider a persuasion model

with a privately informed receiver, where it is commonly known that the receiver

wishes to accept a proposal iff x exceeds a threshold x0, and the receiver’s type t

is his private signal of x. Letting G(t|x) denote the distribution of t conditional on

x, with corresponding density g(t|x), this setup maps to our model with V (y, x) =

G(y|x), u(y, x) = (x − x0)g(y|x), and g(t|x) strictly log-submodular in (t, x).62,63

These preferences satisfy Assumptions 1 and 2 (see Lemma 3), but not Assumption

3, as u(y, x) > 0 for all y when x > x0. Nonetheless, assuming that the receiver

breaks ties in the sender’s favor, we have γ(µ) = max{y : Eµ[u(y, x)] ≥ 0}.

Let us take for granted that Theorem 3 holds even though Assumption 3 is violated

(e.g., this is clearly true with a discrete prior). Applying Theorem 3 with a perturba-

tion that fixes one action while increasing the other action and the sender’s expected

utility (for fixed actions), we obtain the following result, which reproduces Guo and

Shmaya’s main qualitative insight.64

Proposition 3. In Guo and Shmaya’s model of persuading a privately informed

receiver, every optimal signal is single-peaked.

61To see this, suppose x < 1. Then ux(y, x) = 1− 2xy > 0 for y ≤ x/(1 + x2) = maxY . Moreover,
uyx(y, x)/ux(y, x) = −2x/(1−2xy) is always decreasing in x, while Vyx(y2, x)/ux(y1, x) = −1/(x2−
2x3y1) is decreasing in x iff 3xminY = 3x2/(1 + x2) ≥ 1, or equivalently x ≥ 1/

√
2.

62The ordering convention here is that high t is bad news about x. This ordering is opposite to Guo
and Shmaya’s, but follows our convention that the receiver accepts for types below a cutoff.
63Inostroza and Pavan (2025) study robust stress test design in a setting with multiple receivers
with coordination motives. As they note, the single-receiver version of their model is a special case
of Guo and Shmaya (2019).
64When the prior has positive density on [0, 1], Guo and Shmaya’s Theorem 3.1 additionally implies
that the optimal signal is single-peaked negative assortative.
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E.3. Stress Tests. Goldstein and Leitner (2018) consider a model of optimal stress

tests. The sender is a bank regulator and the receiver is a perfectly competitive

market. The bank has an asset that yields a random cash flow. The asset’s quality

is x, which is observed by the bank and the regulator but not the market, and is

normalized to equal the asset’s expected cash flow.65 The regulator designs a test

to reveal information about x. After observing the test result, the market offers a

competitive price y for the asset. Finally, the bank decides whether to keep the asset

and receive the random cash flow, or sell it at price y. Letting z denote the bank’s

final cash holding (equal to either the random cash flow or y), the bank’s payoff equals

z+ 1{z ≥ x0}, where x0 is a constant. An interpretation is that the bank faces a run

if its cash holding falls below x0. The regulator designs the test to maximize expected

social welfare, or equivalently to minimize the probability of a run.

Goldstein and Leitner show that a bank with a type-x asset is willing to sell at a price

y iff y exceeds a reservation price σ̃(x) that satisfies σ̃(x) > x if x < x0, σ̃(x) < x

if x > x0, and σ̃′(x) ≥ 0. Intuitively, if x < x0 then the bank demands a premium

to forego the chance that a lucky cash flow shock pushes its holdings above x0, while

if x > x0 then the bank desires insurance against bad cash flow shocks that push

its holdings below x0. However, the value of the regulator’s problem is unaffected if

the reservation price is re-defined as σ(x) = x if x ≤ x0 and σ(x) = σ̃(x) if x > x0,

because it is suboptimal for the regulator to induce a bank to sell at a price below

x0. It is more convenient to work with the normalized reservation price σ(x).

It is also convenient to restrict attention to tests that, for each x, either induce the

bank to sell or fully disclose the bank’s value: this is without loss because pooling

two asset types that do not sell is weakly worse than disclosing these types. For such

a test, the price induced by any posterior µ is γ(µ) = Eµ[x], so we are in the linear

receiver case. We can capture the requirement that the bank always sells if y 6= x by

setting V (y, x) = −∞ if y < σ(x). Finally, letting w(x) > 0 equal the social gain

when a bank sells a type-x asset at a price above x0 (which equals the probability

that a type-x asset yields a cash flow below x0), we obtain the linear receiver case of

our model with

V (y, x) =

w(x)1{y ≥ x0}, if y ≥ σ(x),

−∞, otherwise.

65This is the model in Section 5 of their paper, where the bank observes x.
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Note that V violates Assumptions 1 and 4, as it is discontinuous and only weakly

increasing in y. Nonetheless, if we assume a discrete prior (as do Goldstein and

Leitner), we recover their main qualitative insight.

Proposition 4. In Goldstein and Leitner’s stress test model with a discrete prior,

there exists an optimal single-dipped signal.

To prove the proposition, we use a perturbation that fixes both actions. Since V is

only weakly increasing, this perturbation now only weakly increases the sender’s ex-

pected utility. Nonetheless, when X is finite, repeatedly applying such perturbations

eventually yields a single-dipped signal. We also note that, as Goldstein and Leit-

ner show, if Eφ[x] < x0—so that no disclosure does not attain the sender’s first-best

outcome—then every optimal signal is single-dipped.66

F. Additional Proofs

F.1. Proof of Lemma 3. 1 =⇒ 2. It is easy to see that Assumption 2 for µ = δx

such that u(y, x) = 0 yields (14). Similarly, Assumption 2 for µ = ρδx + (1 − ρ)δx

such that u(y, x) < 0 < u(y, x′) and ρu(y, x) + (1− ρ)u(y, x′) = 0 yields (15).

2 =⇒ 1. By Lemma 11, for any y ∈ Y and µ ∈ ∆(X) such that
∫
u(y, x)dµ(x) = 0,

there exists σµ ∈ ∆(∆(X)) such that
∫
ηdσµ(η) = µ, and for each η ∈ supp(σµ) there

exist x, x′ ∈ X and ρ ∈ [0, 1] such that η = ρδx + (1− ρ)δx′ and

ρu(y, x) + (1− ρ)u(y, x′) = 0. (19)

It suffices to show that

ρuy(y, x) + (1− ρ)uy(y, x
′) < 0. (20)

There are two cases to consider. First, if ρu(y, x) = 0, then (20) follows from (14)

and (19). Second, if ρu(y, x) 6= 0, then (20) follows from (15) and (19).

3 =⇒ 1. Notice that∫
u(y, x)dµ(x) = 0 ⇐⇒

∫
ũ(y, x)dµ(x) = 0.

66A related model by Garcia and Tsur (2021) studies optimal information disclosure to facilitate
trade in an insurance market with adverse selection. Their model can be mapped to the linear
receiver case with V (y, x) = ν(y) if y ≥ σ(x) and V (y, x) = −∞ otherwise, where ν(y) is a strictly
increasing, strictly concave function, and σ is a continuous, strictly increasing function that satisfies
σ(x) < x. Considering a similar perturbation as in Goldstein and Leitner shows that single-dipped
negative assortative disclosure is optimal in their model. We also mention Leitner and Williams
(2023), where a bank regulator discloses information about the design of a stress test to induce
banks to make socially desirable investments. In this model, single-peaked disclosure is optimal.
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Hence, if ũy(y, x) < 0 for all (y, x) and
∫
u(y, x)dµ = 0, then∫

uy(y, x)dµ(x) = g(y)

∫
ũy(y, x)dµ(x)+g′(y)

∫
ũ(y, x)dµ(x) = g(y)

∫
ũy(y, x)dµ(x) < 0,

yielding Assumption 2.

1 =⇒ 3. We rely on the following lemma.

Lemma 10. If Assumptions 1 and 2 hold, then there exists a continuous function

h(y) such that

uy(y, x) + h(y)u(y, x) < 0, for all (y, x) ∈ Y ×X. (21)

Given this lemma, the required g is given by

g(y) = e−
∫ y
0 h(ỹ)dỹ,

as follows from

ũy(y, x) =
∂

∂y

(
u(y, x)

e−
∫ y
0 h(ỹ)dỹ

)
=
uy(y, x) + h(y)u(y, x)

e−
∫ y
0 h(ỹ)dỹ

< 0.

Proof of Lemma 10. Fix y ∈ Y . Let M+(X) be the set of positive Borel measures on

X. Define the set C ⊂ R3 as follows

C =

{(∫
u(y, x)dµ(x),

∫
uy(y, x)dµ(x)− z,

∫
dµ(x)

) ∣∣ µ ∈M+(X), z ≥ 0

}
.

Clearly, C is a convex cone.

Moreover, C is closed, because u(y, x) and uy(y, x) are continuous in x. To see this,

let sequences µn ∈M+(X) and zn ∈ Rn+ be such that∫
u(y, x)dµn(x)→ c1,

∫
uy(y, x)dµn(x)− zn → c2,

∫
dµn(x)→ c3

for some (c1, c2, c3) ∈ R3. It follows from
∫

dµn(x)→ c3 that all µn belong to a com-

pact subset of positive measures whose total variation is bounded by supn
∫

dµn(x),

and hence, up to extraction of a subsequence, µn → µ ∈ M+(X), with
∫

dµ(x) = c3.

Since u(y, x) and uy(y, x) are continuous in x, we get
∫
u(y, x)dµn(x)→

∫
u(y, x)dµ(x) =

c1 and
∫
uy(y, x)dµn(x)→

∫
uy(y, x)dµ(x). Hence, zn →

∫
uy(y, x)dµ(x)− c2 = z ≥

0. In sum, ∫
u(y, x)dµ(x) = c1,

∫
uy(y, x)dµ(x)− z = c2,

∫
dµ(x) = c3,

showing that C is closed.
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Next, notice that Assumption 2 implies that (0, 0, 1) /∈ C. Thus, by the separation

theorem (e.g., Corollary 5.84 in Aliprantis and Border 2006), there exists β ∈ R3 such

that, for all µ ∈M+(X) and z ≥ 0,

0β1 + 0β2 + 1β3 < 0 ≤
(∫

u(y, x)dµ(x)

)
β1 +

(∫
uy(y, x)dµ(x)− z

)
β2 +

(∫
dµ(x)

)
β3,

or equivalently

u(y, x)β1 + uy(y, x)β2 + β3 ≥ 0, for all x ∈ X,

−β2 ≥ 0,

β3 < 0.

(22)

We now show that there exists a scalar h(y) ∈ R satisfying

uy(y, x) + h(y)u(y, x) < 0, for all x ∈ X. (23)

There are two cases. First, if β2 < 0 then h(y) = β1/β2 ∈ R satisfies (23). Second, if

β2 = 0 then (22) implies that

u(y, x)β1 ≥ −β3 > 0, for all x ∈ X.

Thus, we have either (i) u(y, x) > 0 for all x ∈ X, so, taking into account continuity

of u(y, x) and uy(y, x) in x,

h(y) = min
x∈X

{
−uy(y, x)

u(y, x)

}
− 1 ∈ R

satisfies (23); or (ii) u(y, x) < 0 for all x ∈ X, so

h(y) = max
x∈X

{
−uy(y, x)

u(y, x)

}
+ 1 ∈ R

satisfies (23).

It remains to show that if for all y ∈ Y there exists h(y) ∈ R satisfying (23), then

there exists a continuous function h̃ : Y → R satisfying (23). Define a correspondence

ϕ : Y ⇒ R,

ϕ(y) = {r ∈ R : uy(y, x) + ru(y, x) < 0, for all x ∈ X}.

Note that ϕ is nonempty valued by assumption, and is clearly convex valued. In

addition, ϕ has open lower sections, because for each r ∈ R the set

{y ∈ Y : uy(y, x) + ru(y, x) < 0, for all x ∈ X}



9

is open, since uy and u are continuous on the compact set Y ×X. Thus, by Browder’s

Selection Theorem (Theorem 17.63 in Aliprantis and Border 2006), ϕ admits a con-

tinuous selection h̃, which by construction satisfies (23). �

F.2. Proof of Lemma 1. The proof of Lemma 1 remains valid without Assumption

4 and when X is an arbitrary compact metric space.

By Corollary 2 in Dworczak and Kolotilin (2024), it suffices to show that W is

Lipschitz on ∆(X), endowed with the Kantorovich-Rubinstein distance

dKR(µ, η) = sup

{∫
X

p(x)d(µ− η)(x) : p is 1-Lipschitz on X

}
, for all µ, η ∈ ∆(X).

Recall that the Kantorovich-Rubinstein distance metrizes the weak* topology on

∆(X) (e.g., Theorem 6.9 in Villani 2009).

Let LVy , LVx , and Lux be the maximum values of |Vy|, |Vx|, and |ux| on Y × [0, 1],

which are well-defined because Vy, Vx, and ux are continuous, by Assumption 1, and

Y × [0, 1] is compact. Then V (y, x) is LVy -Lipschitz in y for all x, V (y, x) is LVx-

Lipschitz in x for all y, and u(y, x) is Lux-Lipschitz in x for all y. Moreover, let luy
be the minimum value of −

∫
X
uy(γ(µ), x)dµ(x) on ∆(X), which is well-defined by

Assumption 1 and is strictly positive (i.e., luy > 0), by Assumption 2. Note that γ is

Lux/luy -Lipschitz on ∆(X), because, by the implicit function theorem, the derivative

of γ(µ+ ρ(η − µ)) with respect to ρ at any ρ ∈ [0, 1] and µ, η ∈ ∆(X) satisfies∣∣∣∣ d

dρ
γ(µ+ ρ(η − µ))

∣∣∣∣ =

∣∣∣∣ ∫
u(γ(µ+ ρ(η − µ)), x)d(η − µ)(x)

−
∫
uy(γ(µ+ ρ(η − µ)), x)d(µ+ ρ(η − µ))(x)

∣∣∣∣
≤
∣∣∣∣ 1

luy

∫
u(γ(µ+ ρ(η − µ)), x)d(η − µ)(x)

∣∣∣∣
≤ Lux

luy
dKR(η, µ),

where the last inequality holds by the definition of dKR and Lux-Lipschitz continuity

of u(y, x) in x for all y. Now, for any µ, η ∈ ∆(X), we have

|W (η)−W (µ)| =
∣∣∣∣∫ (V (γ(η), x)− V (γ(µ), x))dη(x) +

∫
V (γ(µ), x)d(η − µ)(x)

∣∣∣∣
≤
∫
|V (γ(η), x)− V (γ(µ), x))| dη(x) +

∣∣∣∣∫ V (γ(µ), x)d(η − µ)(x))

∣∣∣∣
≤ LVy

Lux
luy

dKR(η, µ) + LVxdKR(η, µ),

showing that W is Lipschitz on ∆(X).
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F.3. Proof of Remark 1. The proof of Remark 1 remains valid if Assumption 4 is

replaced with strict single-crossing of u(y, x) in x.

Recall that to define Λ we took an arbitrary solution p to (D). Also, recall (18) stating

that

p(x) = V (γ(µ), x) + q(γ(µ))u(γ(µ), x), for all µ ∈ Λ and x ∈ supp(µ).

Fix any solution τ to (P), so supp(τ) ⊂ Λ. Let X? = ∪µ∈supp(τ) supp(µ). Then, by

(BP), we have φ(X?) = 1, so the closure of X? is X.

Next, take any x ∈ X?. If there is µ ∈ supp(τ) and x ∈ supp(µ) such that γ(δx) =

γ(µ), then p(x) = V (γ(δx), x). Otherwise, there is µ ∈ supp(τ) and x, x′ ∈ supp(τ)

such that either x < χ(γ(µ)) < x′ or x′ < χ(γ(µ)) < x. Suppose that x < χ(γ(µ)) <

x′ (the other case is analogous and omitted). By Theorem 1, we have

Vy(γ(µ), x) + q(γ(µ))uy(γ(µ), x) + q′(γ(µ))u(γ(µ), x) = 0,

Vy(γ(µ), x′) + q(γ(µ))uy(γ(µ), x′) + q′(γ(µ))u(γ(µ), x′) = 0.

Adding the first equation multiplied by u(γ(µ), x′) and the second multiplied by

−u(γ(µ), x), we obtain

q(γ(µ)) = − v(γ(µ), x)u(γ(µ), x′)− v(γ(µ), x′)u(γ(µ), x)

uy(γ(µ), x)u(γ(µ), x′)− uy(γ(µ), x′)u(γ(µ), x)
,

which is well-defined because the denominator is strictly negative by Assumption 2.

Consequently, p(x) = V (γ(µ), x) + q(γ(µ))u(γ(µ), x). In sum, for each x ∈ X?, an

arbitrary solution p to (D) is determined by a fixed solution τ to (P). Moreover, since

X is the closure of X?, there is a unique continuous extension of p from X? to X.

This shows that there is a unique p ∈ L(X) that solves (D).

F.4. Proof of Theorem 2. We first prove the second part where the twist condition

holds. The proof of this part remains valid if Assumption 4 is replaced with strict

single-crossing of u(y, x) in x.

Suppose by contradiction that there exists µ ∈ Λ with x1 < x2 < x3 in supp(µ).

Then, by the definition of γ(µ) and strict single-crossing of u(y, x) in x, we have

min supp(µ) < χ(γ(µ)) < max supp(µ). Thus, by redefining x1 = min supp(µ) and

x3 = max supp(µ) if necessary, we can assume that x1 < χ(γ(µ)) < x3. So, by the

twist condition, the rows of the matrix S are linearly independent, which contradicts

the fact that (4) holds at (γ(µ), x1), (γ(µ), x2), and (γ(µ), x3). Thus, | supp(µ)| ≤ 2

for all µ ∈ Λ, implying that every optimal signal is pairwise.



11

We now turn to the first part. The proof of this part does not require Assumption 4,

and it remains valid when X is an arbitrary compact metric space.

For any µ ∈ ∆(X), denote the set of distributions of posteriors with average posterior

equal to µ by

∆2 (µ) =

{
τ ∈ ∆(∆(X)) :

∫
∆(X)

ηdτ (η) = µ

}
.

Let ∆Bin
2 (µ) ⊂ ∆2(µ) denote the set of such distributions where in addition the

posterior is always supported on at most two states:

∆Bin
2 (µ) =

{
τ ∈ ∆2(µ) : supp(τ) ⊂ ∆Bin

1

}
,

where

∆Bin
1 = {η ∈ ∆(X) : |supp(η)| ≤ 2} .

We wish to show that for each τ ∈ ∆2(φ), there exists τ̂ ∈ ∆Bin
2 (φ) such that πτ̂ = πτ .

We set the stage by defining some key objects and establishing their properties. Define

∆1 = ∆ (X) and ∆2 = ∆ (∆ (X)). Since X is compact, the sets ∆1 and ∆2 are

also compact (in the weak* topology), by Prokhorov’s Theorem (Theorem 15.11 in

Aliprantis and Border 2006). In addition, ∆2 (µ) is compact, since it is a closed subset

of the compact set ∆2.

Define the correspondence P : ∆1 ⇒ ∆1 as

P (µ) =

{
η ∈ ∆1 :

∫
X

u (γ (µ) , x) dη (x) = 0

}
.

For each µ ∈ ∆1, P (µ) is a moment set—a set of probability measures η ∈ ∆1

satisfying a given moment condition (e.g., Winkler 1988). By Assumption 2, we

have, for all µ, η ∈ ∆1,

η ∈ P (µ) ⇐⇒ γ (µ) = γ (η) . (24)

Clearly, P (µ) is nonempty (as µ ∈ P (µ)) and convex. Since u(y, x) is continuous in

x, P (µ) is a closed subset of ∆1, and hence is compact. Also, the correspondence P

has a closed graph. Indeed, consider two sequences µn → µ ∈ ∆1 and ηn → η ∈ ∆1

with µn ∈ ∆1 and ηn ∈ P (µn), so that∫
X

u (γ (µn) , x) dηn (x) = 0.

Note that γ(µ) is a continuous function of µ, by Berge’s theorem (Theorem 17.31

in Aliprantis and Border 2006). Since u is also continuous, by Corollary 15.7 in



12

Aliprantis and Border (2006), we have∫
X

u (γ (µ) , x) dη (x) = 0,

proving that η ∈ P (µ), so P has a closed graph.

Define the correspondence E : ∆1 ⇒ ∆1 as

E (µ) = P (µ) ∩∆Bin
1 = {η ∈ P (µ) : |supp η| ≤ 2} .

Notice that for each µ ∈ ∆1, the support of µ is well-defined, by Theorem 12.14 in

Aliprantis and Border (2006). Moreover, from the proof of Theorem 15.8 in Aliprantis

and Border (2006), it follows that ∆Bin
1 is a closed subset of ∆1, so both ∆Bin

1 and

E(µ) are compact.

Define the correspondence Σ : ∆1 ⇒ ∆2 as

Σ (µ) =

{
σ ∈ ∆ (E (µ)) : µ =

∫
E(µ)

ηdσ (η)

}
.

Lemma 12 shows that the correspondence Σ admits a measurable selection. In turn,

Lemma 12 relies on Lemma 11.

Lemma 11. Let Assumptions 1 and 2 hold. For any y ∈ Y and µ ∈ ∆(X) such that∫
u(y, x)dµ(x) = 0, there exists σµ ∈ ∆(∆(X)) such that

∫
ηdσµ(η) = µ and for each

η ∈ supp(σµ) we have
∫
u(y, x)dη(x) = 0 and | supp(η)| ≤ 2.

Proof. Follows immediately from the Choquet Theorem (Theorem 3.1 in Winkler

1988) and Richter-Rogosinsky’s Theorem (Theorem 2.1 in Winkler 1988) �

Lemma 12. There exists a measurable function µ 7→ σµ ∈ Σ (µ).

Proof. The correspondence Σ is nonempty-valued, by Lemma 11. Next, fix µ ∈ ∆1,

and consider a sequence σn → Σ ∈ ∆2 with σn ∈ Σ (µ). By the Portmanteau Theorem

(Theorem 15.3 in Aliprantis and Border 2006), we have∫
E(µ)

ηdσn (η)→
∫
E(µ)

ηdσ (η) and lim sup
n
σn (E (µ)) ≤ σ (E (µ)) ,

where the last inequality holds because E (µ) is closed. Thus,∫
E(µ)

ηdσ (η) = µ and 1 = lim sup
n
σn (E (µ)) ≤ σ (E (µ)) ≤ 1,

proving that σ ∈ Σ (µ). Thus, Σ is closed-valued.
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Next, consider two sequences µn → µ ∈ ∆1 and σn → σ ∈ ∆2 with µn ∈ ∆1 and

σn ∈ Σ(µn), so that

µn =

∫
E(µ)

ηdσn (η) , σn
(
∆Bin

1

)
= 1, and σn (P (µn)) = 1.

The Portmanteau Theorem implies that µ =
∫
ηdσ (η) and σ

(
∆Bin

1

)
= 1, since ∆Bin

1

is closed. Define P (µn) as the closure of ∪∞k=nP (µk). By construction, P (µk) ⊂
P (µk) ⊂ P (µn) for k ≥ n, so the Portmanteau Theorem implies that σ(P (µn)) = 1.

Moreover, P (µn) ↓ P ⊂ P (µ), because P has a closed graph. Hence, σ(P (µ)) = 1, by

the continuity of probability measures (Theorem 10.8 in Aliprantis and Border 2006).

That is, σ ∈ Σ(µ), showing that the correspondence Σ has a closed graph.

Therefore, Σ is measurable, by Theorem 18.20 in Aliprantis and Border (2006), as

well as nonempty- and closed-valued. Hence, there exists a measurable function

µ 7→ σµ ∈ Σ (µ), by Theorem 18.13 in Aliprantis and Border (2006). �

Finally, taking a measurable selection, for each τ ∈ ∆2 (φ), define τ̂ ∈ ∆2 as

τ̂
(

∆̃1

)
=

∫
∆1

σµ

(
∆̃1

)
dτ(µ) (25)

for every measurable set ∆̃1 ⊂ ∆1. By construction, τ̂ ∈ ∆Bin
2 (φ), since

τ̂(∆Bin
1 ) =

∫
∆1

σµ(∆Bin
1 )dτ(µ) = 1

and

φ =

∫
∆1

µdτ(µ) =

∫
∆1

(∫
E(µ)

ηdσµ(η)

)
dτ(µ) =

∫
∆1

ηdτ̂(η),

where the first equality holds by τ ∈ ∆2(φ), the second by σµ ∈ Σ, and the third by

(25). Similarly, for each measurable Ỹ ⊂ Y and X̃ ⊂ X, we have

πτ (Ỹ , X̃) =

∫
∆1

1{γ(µ) ∈ Ỹ }µ(X̃)dτ(µ)

=

∫
∆1

1{γ(µ) ∈ Ỹ }
(∫

E(µ)

η(X̃)dσµ(η)

)
dτ(µ)

=

∫
∆1

(∫
E(µ)

1{γ(η) ∈ Ỹ }η(X̃)dσµ(η)

)
dτ(µ)

=

∫
∆1

1{γ(η) ∈ Ỹ }η(X̃)dτ̂(η)

= πτ̂ (Ỹ , X̃),
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where the second equality holds by σµ ∈ Σ, the third by (24) and E(µ) ⊂ P (µ), and

the fourth by (25).

F.5. Proof of Corollary 1. The proof of Corollary 1 remains valid if Assumption 4 is

replaced with strict single-crossing of u(y, x) in x. Since |X| ≥ 3, strict single-crossing

of u(y, x) in x implies that there exist x1 < x2 in X such that x1 < χ(γ(φ)) < x2.

Suppose that no disclosure is optimal. Then, by part 3 of Theorem 1, it follows that

(4) holds for µ = φ and all x ∈ X, so there exist constants q(γ(φ)), q′(γ(φ)) ∈ R such

that

Vy(γ(φ), x) = −q(γ(φ))uy(γ(φ), x)− q′(γ(φ))u(γ(φ), x) for all x ∈ X.

Thus, Vy(γ(φ), ·) lies in a linear space L spanned by uy(γ(φ), ·) and u(γ(φ), ·), whose

dimension is at most 2. But a generic Vy(γ(φ), ·) lies in a linear space whose dimension

is at least 3, since |X| ≥ 3, and thus it does not belong to L, showing that generically

no disclosure is suboptimal.

Finally, suppose that no disclosure is optimal for all priors. It suffices to show that

W is given by (6) for some functions m, l, and H, as then Corollary 1 in Kolotilin,

Mylovanov, and Zapechelnyuk (2022) implies that no disclosure is optimal for all

priors iff H is concave. By Assumption 3 and part 3 of Theorem 1, there exist

functions q0, q1 such that

Vy(y, x) + q0(y)uy(y, x) + q1(y)u(y, x) = 0, for all (y, x) ∈ [0, 1]2. (26)

First, consider the linear receiver case. Note that (26) simplifies to

Vy(y, x) = q0(y) + q1(y)(y − x).

Thus,

V (y, x) =

∫ y

0

(q0(ỹ) + q1(ỹ)(ỹ − x))dỹ + V (0, x),

and

W (µ) =

∫ Eµ[x]

0

(q0(ỹ) + q1(ỹ)(ỹ − Eµ[x]))dỹ + Eµ[V (0, x)].

So (6) holds with m(x) = x, l(x) = V (0, x), and H(y) =
∫ y

0
(q0(ỹ) + q1(ỹ)(ỹ − y))dỹ.

Second, consider the state-independent sender case. We have q0(y) > 0 for all y ∈
[0, 1], by (3) and Assumptions 2 and 4. Differentiating (26) with respect to x yields

uyx(y, x) = −q1(y)

q0(y)
ux(y, x).
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Thus,

u(y, x) = (u(0, x)− u(0, 0))e
−

∫ y
0
q1(ỹ)
q0(ỹ)

dỹ
+ u(y, 0),

implying that γ(µ) = a(Eµ[u(0, x)]) for some function a. Hence

W (µ) = V (a(Eµ[u(0, x)])).

So (6) holds with m(x) = u(0, x), l(x) = 0, and H(y) = V (a(y)).

F.6. Proof of Remark 2. Let Λ be strictly single-dipped. Note that there do

not exist distinct µ and η in Λ such that γ(µ) = γ(η), as otherwise µ/2 + η/2,

with | supp(µ/2 + η/2)| ≥ 3, would also be in Λ, contradicting that Λ is pairwise.

Thus, there exist unique functions χ1 and χ2 from YΛ to X such that supp(µ) =

{χ1(γ(µ)), χ1(γ(µ))} and χ1(γ(µ)) = χ(γ(µ)) = χ2(γ(µ)) or χ1(γ(µ)) < χ(γ(µ)) <

χ2(γ(µ)) for all µ ∈ Λ. Moreover, for all y < y′ in YΛ, we have χ2(y) ≤ χ2(y′), as

otherwise there would exist µ, µ′ ∈ Λ such that γ(µ) = y, γ(µ′) = y′, and χ1(y) ≤
χ(y) < χ(y′) ≤ χ2(y′) < χ2(y) contradicting that Λ is single-dipped. Likewise, for all

y < y′ in YΛ, we have χ1(y′) /∈ (χ1(y), χ2(y)), as otherwise there would exist µ, µ′ ∈ Λ

such that γ(µ) = y, γ(µ′) = y′, and χ1(y) < χ1(y′) < χ2(y) contradicting that Λ is

single-dipped.

F.7. Proof of Lemma 5. We consider the case where uyx/ux and Vyx/ux are in-

creasing in x; the case where uyx/ux and Vyx/ux are decreasing in x is analogous and

thus omitted.

Fix x1 < x2 < x3 and y such that u(y, x1) < 0 < u(y, x3). The inequality |S| > 0

follows from the following displayed equations:

u(y, x3)− u(y, x1) =

∫ x3

x1

ux(y, x)dx > 0,

where the inequality holds by Assumption 4;∣∣∣∣∣ u(y, x1) u(y, x3)

uy(y, x1) uy(y, x3)

∣∣∣∣∣ = −u(y, x3)uy(y, x1) + u(y, x1)uy(y, x3) > 0,

where the inequality holds by part 2 of Lemma 3;∣∣∣∣∣Vy(y, x1) Vy(y, x3)

u(y, x1) u(y, x3)

∣∣∣∣∣ = u(y, x3)Vy(y, x1)− u(y, x1)Vy(y, x3) > 0,
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where the inequality holds by Assumption 4;

−

∣∣∣∣∣Vy(y, x2)− Vy(y, x1) Vy(y, x3)− Vy(y, x2)

u(y, x2)− u(y, x1) u(y, x3)− u(y, x2)

∣∣∣∣∣
= (Vy(y, x3)− Vy(y, x2))(u(y, x2)− u(y, x1))− (Vy(y, x2)− Vy(y, x1))(u(y, x3)− u(y, x2))

=

∫ x3

x2

∫ x2

x1

(Vyx(y, x̃)ux(y, x)− Vyx(y, x)ux(y, x̃))dxdx̃ ≥ (>)0,

where the inequality holds by Assumption 4 and (strict) monotonicity of Vyx/ux in x;∣∣∣∣∣ u(y, x2)− u(y, x1) u(y, x3)− u(y, x2)

uy(y, x2)− uy(y, x1) uy(y, x3)− uy(y, x2)

∣∣∣∣∣
= (u(y, x2)− u(y, x1))(uy(y, x3)− uy(y, x2))− (u(y, x3)− u(y, x2))(uy(y, x2)− uy(y, x1))

=

∫ x3

x2

∫ x2

x1

(ux(y, x)uyx(y, x̃)− ux(y, x̃)uyx(y, x))dxdx̃ ≥ (>)0,

where the inequality holds by Assumption 4 and (strict) monotonicity of uyx/ux in x;∣∣∣∣∣∣∣
Vy(y, x1) Vy(y, x2) Vy(y, x3)

u(y, x1) u(y, x2) u(y, x3)

uy(y, x1) uy(y, x2) uy(y, x3)

∣∣∣∣∣∣∣∣∣∣∣∣ u(y, x1) u(y, x3)

uy(y, x1) uy(y, x3)

∣∣∣∣∣
(u(y, x3)− u(y, x1))

= −

∣∣∣∣∣Vy(y, x2)− Vy(y, x1) Vy(y, x3)− Vy(y, x2)

u(y, x2)− u(y, x1) u(y, x3)− u(y, x2)

∣∣∣∣∣
+

∣∣∣∣∣Vy(y, x1) Vy(y, x3)

u(y, x1) u(y, x3)

∣∣∣∣∣∣∣∣∣∣ u(y, x1) u(y, x3)

uy(y, x1) uy(y, x3)

∣∣∣∣∣
∣∣∣∣∣ u(y, x2)− u(y, x1) u(y, x3)− u(y, x2)

uy(y, x2)− uy(y, x1) uy(y, x3)− uy(y, x2)

∣∣∣∣∣ ,
where the equality holds by rearrangement.

F.8. Proof of Lemma 6. We consider the case where uyx/ux and Vyx/ux are in-

creasing in x; the case where uyx/ux and Vyx/ux are decreasing in x is analogous and

thus omitted.
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Fix x1 < x2 < x3 and y2 > y1 such that u(y1, x1) < 0 < u(y1, x2). The inequality

|R| > 0 follows from the following displayed equations:

u(y1, x3)− u(y1, x1) =

∫ x3

x1

ux(y1, x)dx > 0,

where the inequality holds by Assumption 4;∣∣∣∣∣u(y1, x1) u(y1, x3)

u(y2, x1) u(y2, x3)

∣∣∣∣∣
= −u(y1, x3)u(y2, x1) + u(y1, x1)u(y2, x3)

= −g(y1)ũ(y1, x3)g(y2)ũ(y2, x1) + g(y1)ũ(y1, x1)g(y2)ũ(y2, x3)

= g(y1)g(y2)[−ũ(y1, x3)(ũ(y2, x1)− ũ(y1, x1)) + ũ(y1, x1)(ũ(y2, x3)− ũ(y1, x3))]

= g(y1)g(y2)

∫ y2

y1

[−ũ(y1, x3)ũy(y, x1) + ũ(y1, x1)ũy(y, x3)]dy > 0,

where the inequality and the second equality hold by parts 2 and 3 of Lemma 3;∣∣∣∣∣V (y2, x1)− V (y1, x1) V (y2, x3)− V (y1, x3)

u(y1, x1) u(y1, x3)

∣∣∣∣∣
= u(y1, x3)

∫ y2

y1

Vy(y, x1)dy − u(y1, x1)

∫ y2

y1

Vy(y, x3)dy > 0,

where the inequality holds by Assumption 4;

−

∣∣∣∣∣V (y2, x2)− V (y1, x2)− V (y2, x1) + V (y1, x1) V (y2, x3)− V (y1, x3)− V (y2, x2) + V (y1, x2)

u(y1, x2)− u(y1, x1) u(y1, x3)− u(y1, x2)

∣∣∣∣∣
= (V (y2, x3)− V (y1, x3)− V (y2, x2) + V (y1, x2))(u(y1, x2)− u(y1, x1))

−(V (y2, x2)− V (y1, x2)− V (y2, x1) + V (y1, x1))(u(y1, x3)− u(y1, x2))

=

∫ y2

y1

∫ x3

x2

∫ x2

x1

(Vyx(y, x̃)ux(y1, x)− Vyx(y, x)ux(y1, x̃))dxdx̃dy ≥ (>)0,

where the inequality holds by Assumption 4 and (strict) monotonicity of Vyx/ux in x;∣∣∣∣∣u(y1, x2)− u(y1, x1) u(y1, x3)− u(y1, x2)

u(y2, x2)− u(y2, x1) u(y2, x3)− u(y2, x2)

∣∣∣∣∣
= (u(y1, x2)− u(y1, x1))(u(y2, x3)− u(y2, x2))− (u(y1, x3)− u(y1, x2))(u(y2, x2)− u(y2, x1))

=

∫ x3

x2

∫ x2

x1

(ux(y1, x)ux(y2, x̃)− ux(y1, x̃)ux(y2, x))dxdx̃ ≥ (>)0,
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where the inequality holds by Assumption 4 and (strict) monotonicity of uyx/ux in

x, which imply that, for y2 > y1 and x̃ > x, we have

ln
ux(y1, x)ux(y2, x̃)

ux(y1, x̃)ux(y2, x)
=

∫ y2

y1

∂

∂y
[lnux(y, x̃)− lnux(y, x)]dy =

∫ y2

y1

[
uyx(y, x̃)

ux(y, x̃)
− uyx(y, x)

ux(y, x)

]
dy ≥ (>)0;

∣∣∣∣∣∣∣
V (y2, x1)− V (y1, x1) −(V (y2, x2)− V (y1, x2)) V (y2, x3)− V (y1, x3)

−u(y1, x1) u(y1, x2) −u(y1, x3)

u(y2, x1) −u(y2, x2) u(y2, x3)

∣∣∣∣∣∣∣∣∣∣∣∣u(y1, x1) u(y1, x3)

u(y2, x1) u(y2, x3)

∣∣∣∣∣
(u(y1, x3)− u(y1, x1))

= −

∣∣∣∣∣V (y2, x2)− V (y1, x2)− V (y2, x1) + V (y1, x1) V (y2, x3)− V (y1, x3)− V (y2, x2) + V (y1, x2)

u(y1, x2)− u(y1, x1) u(y1, x3)− u(y1, x2)

∣∣∣∣∣
+

∣∣∣∣∣V (y2, x1)− V (y1, x1) V (y2, x3)− V (y1, x3)

u(y1, x1) u(y1, x3)

∣∣∣∣∣∣∣∣∣∣u(y1, x1) u(y1, x3)

u(y2, x1) u(y2, x3)

∣∣∣∣∣
∣∣∣∣∣u(y1, x2)− u(y1, x1) u(y1, x3)− u(y1, x2)

u(y2, x2)− u(y2, x1) u(y2, x3)− u(y2, x2)

∣∣∣∣∣ ,
where the equality holds by rearrangement.

F.9. Proof of Lemma 7. Fix x1 < x2 < x3 and y2 > y1 such that u(y1, x1) <

0 < u(y1, x3). The first claimed inequality follows as in the proof of Lemma 6, by

Assumption 2 and u(y1, x1) < 0 < u(y1, x3). We thus focus on the second and third

inequalities.

As in the proof of Lemma 6, Assumption 4 and monotonicity of uyx/ux in x yield

u(y1, x3) > u(y1, x2) > u(y1, x1),

u(y2, x3)− u(y2, x2)

u(y1, x3)− u(y1, x2)
≥ u(y2, x2)− u(y2, x1)

u(y1, x2)− u(y1, x1)
.

There are three cases to consider.

(1) u(y1, x2) = 0. In this case, u(y2, x2) < 0, by Assumption 2. Thus,

u(y2, x2)u(y1, x1) > 0 = u(y2, x1)u(y1, x2),

u(y2, x3)u(y1, x2) = 0 > u(y2, x2)u(y1, x3).

(2) u(y1, x2) > 0. In this case, as follows from the proof of Lemma 6,

u(y2, x2)u(y1, x1) > u(y2, x1)u(y1, x2),
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by Assumption 2 and u(y1, x1) < 0 < u(y1, x2). Thus,

u(y2, x3)− u(y2, x2)

u(y1, x3)− u(y1, x2)
≥ u(y2, x2)− u(y2, x1)

u(y1, x2)− u(y1, x1)
>
u(y2, x2)

u(y1, x2)

=⇒ u(y2, x3)u(y1, x2) > u(y2, x2)u(y1, x3).

(3) u(y1, x2) < 0. In this case, as follows from the proof of Lemma 6,

u(y2, x3)u(y1, x2) > u(y2, x2)u(y1, x3),

by Assumption 2 and u(y1, x2) < 0 < u(y1, x3). Thus,

u(y2, x2)

u(y1, x2)
>
u(y2, x3)− u(y2, x2)

u(y1, x3)− u(y1, x2)
≥ u(y2, x2)− u(y2, x1)

u(y1, x2)− u(y1, x1)

=⇒ u(y2, x2)u(y1, x1) > u(y2, x1)u(y1, x2).

F.10. Proof of Lemma 8. Fix x1 < x2 < x3 and y2 < y1 such that x1 < χ(y1) < x3.

As in the proof of Lemma 6, Assumption 4 and monotonicity of Vyx/ux in x yield

V (y1, xj)− V (y2, xj) > 0 for j = 1, 2, 3, (27)

u(y1, x3) > u(y1, x2) > u(y1, x1), (28)

V (y1, x3)− V (y2, x3)− V (y1, x2) + V (y2, x2)

u(y1, x3)− u(y1, x2)

≤ V (y1, x2)− V (y2, x2)− V (y1, x1) + V (y2, x1)

u(y1, x2)− u(y1, x1)
.

(29)

There are two cases to consider.

(1) u(y1, x2) ≥ 0. In this case, we have

u(y1, x1)

V (y1, x1)− V (y2, x1)
<

u(y1, x2)

V (y1, x2)− V (y2, x2)
,

by (27) and u(y1, x1) < 0 ≤ u(y1, x2), and

u(y1, x2)

V (y1, x2)− V (y2, x2)
<

u(y1, x3)

V (y1, x3)− V (y2, x3)
,

by

u(y1, x2)(V (y1, x3)− V (y2, x3)) ≤u(y1, x2)
u(y1, x3)− u(y1, x1)

u(y1, x2)− u(y1, x1)
(V (y1, x2)− V (y2, x2))

<u(y1, x3)(V (y1, x2)− V (y2, x2)),



20

where the first inequality holds by (29), V (y1, x1) > V (y2, x1), u(y1, x3) > u(y1, x2),

and u(y1, x2) ≥ 0, and the second inequality holds by V (y1, x2) > V (y2, x2), u(y1, x3) >

u(y1, x2), and u(y1, x1) < 0.

(2) u(y1, x2) ≤ 0. In this case, we have

u(y1, x2)

V (y1, x2)− V (y2, x2)
<

u(y1, x3)

V (y1, x3)− V (y2, x3)
,

by (27) and u(y1, x2) ≤ 0 < u(y1, x3), and

u(y1, x1)

V (y1, x1)− V (y2, x1)
<

u(y1, x2)

V (y1, x2)− V (y2, x2)
,

by

−u(y1, x2)(V (y1, x1)− V (y2, x1)) ≤− u(y1, x2)
u(y1, x3)− u(y1, x1)

u(y1, x3)− u(y1, x2)
(V (y1, x2)− V (y2, x2))

<− u(y1, x1)(V (y1, x2)− V (y2, x2)),

where the first inequality holds by (29), V (y1, x3) > V (y2, x3), u(y1, x3) > u(y1, x2),

and u(y1, x2) ≤ 0, and the second inequality holds by V (y1, x2) > V (y2, x2), u(y1, x2) >

u(y1, x1), and u(y1, x3) > 0.

F.11. Proof of Lemma 9. We give the proof for the single-dipped case. The proof

remains valid if Assumption 4 is replaced with strict single-crossing of u(y, x) in x. Let

τn be any optimal signal under V n, so that supp(τn) ⊂ Λn. Since the set of compact

subsets of a compact set is compact (in the Hausdorff topology), taking a subsequence

if necessary, Λn converges to some compact set Λ ⊂ ∆(X). Since the set of signals

is compact (in the weak* topology), taking a subsequence if necessary, τn converges

weakly to some signal τ . Finally, since Λn → Λ, τn → τ , and supp(τn) ⊂ Λn, it

follows that supp(τ) ⊂ Λ, by Box 1.13 in Santambrogio (2015).

We claim that τ is optimal under V . Since V n
y converges uniformly to Vy, for each

δ > 0 there exists nδ ∈ N such that, for all n ≥ nδ, we have |V n
y (y, x)− Vy(y, x)| ≤ δ

for all (y, x). Since τn is optimal under V n, for each signal τ̃ we have∫
∆(X)

∫
X

∫ y

0

Vy(ỹ, x)dỹdµ(x)dτn(µ) ≥
∫

∆(X)

∫
X

∫ y

0

V n
y (ỹ, x)dỹdµ(x)dτn(µ)− δ

≥
∫

∆(X)

∫
X

∫ y

0

V n
y (ỹ, x)dỹdµ(x)dτ̃(µ)− δ

≥
∫

∆(X)

∫
X

∫ y

0

Vy(ỹ, x)dỹdµ(x)dτ̃(µ)− 2δ.
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Passing to the limit as δ → 0 and n→∞ establishes the optimality of τ under V .

Suppose by contradiction that Λ is not single-dipped. Then there exist µ1, µ2 ∈ Λ

and x1 < x2 < x3 such that x1, x3 ∈ supp(µ1), x2 ∈ supp(µ2), and γ(µ1) < γ(µ2).

Since Λn → Λ, there exist µn1 , µ
n
2 ∈ Λn such that µn1 → µ1 and µn2 → µ2. Since γ(µ)

is continuous in µ and since the support correspondence is lower hemicontinuous,

by Theorem 17.14 in Aliprantis and Border (2006), it follows that there exists n,

µn1 , µ
n
2 ∈ Λn, and xn1 < xn2 < xn3 such that xn1 , x

n
3 ∈ supp(µn1 ), xn2 ∈ supp(µn2 ), and

γ(µn1 ) < γ(µn2 ), contradicting that Λn is single-dipped.

F.12. Proof of Theorem 7. The proof of Theorem 7 remains valid if Assumption

4 is replaced with strict single-crossing of u(y, x) in x.

We start with the following lemma, which is also used in the proof of Theorem 6.

Lemma 13. If X = [0, 1] and Λ is strictly single-dipped, then for each y in YΛ there

exists y′ ≤ y in YΛ such that χ1(y) ≤ χ1(y′) = χ2(y′) ≤ χ2(y).

Proof. We prove that a required y′ can be constructed as

y′ = inf{ỹ ∈ YΛ : χ1(y) ≤ χ1(ỹ) ≤ χ2(ỹ) ≤ χ2(y)}.

By definition, y′ ≤ y. Moreover, y′ ∈ YΛ, because YΛ is compact. Suppose by

contradiction that χ1(y′) < χ2(y′). Let X? = ∪µ∈Λ supp(µ). Since there exists

an optimal signal τ , which satisfies supp(τ) ⊂ Λ and
∫

∆(X)
µdτ(µ) = φ, we have

φ(X?) = 1, so the closure of X? is X = [0, 1]. Thus, there exists y′′ ∈ YΛ such that

χ(y′′) or χ2(y′′) is in (χ1(y′), χ2(y′)). Since Λ is strictly single-dipped, we have y′′ < y′

and χ1(y′) ≤ χ1(y′′) ≤ χ2(y′′) ≤ χ2(y′), contradicting the definition of y′. �

Next, we claim that if y ∈ YΛ and ε > 0 are such that χ1(ỹ) < χ2(ỹ) for all ỹ ∈ (y −
ε, y)∩YΛ, then χ1(ỹ1) < χ2(ỹ2) for all ỹ1, ỹ2 ∈ (y−ε, y)∩YΛ. Suppose by contradiction

that there exist ỹ1, ỹ2 ∈ (y−ε, y)∩YΛ such that χ1(ỹ1) ≥ χ2(ỹ2). By Lemma 13, there

exists ỹ′1 ≤ ỹ1 in YΛ such that χ2(ỹ′1) = χ(ỹ′1) = χ1(ỹ′1) ≥ χ1(ỹ1) ≥ χ2(ỹ2) ≥ χ(ỹ2), so

ỹ′1 ∈ (y − ε, y) ∩ YΛ and χ1(ỹ′1) = χ2(ỹ′1), yielding a contradiction.

Suppose now that φ has a density. Suppose by contradiction that there are two

distinct optimal signals, τ and τ ′. Since Λ is strictly single-dipped, for each y ∈ YΛ,

there is a unique µ in Λ such that γ(µ) = y, namely µ = ρyδχ1(y) +(1−ρy)δχ2(y) where

ρy =


u(y,χ2(y))

u(y,χ2(y))−u(y,χ1(y))
, χ1(y) < χ2(y),

0, χ1(y) = χ2(y).
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Thus, distinct signals τ and τ ′ must induce distinct distributions α and α′ over actions

γ(µ). Let ŷ = sup{y ∈ Y : α([0, y]) 6= α′([0, y])} ∈ YΛ, where the inclusion follows

from α 6= α′ and α(YΛ) = α′(YΛ) = 1. By the regularity condition and the claim

above, there exists ε > 0 such that either (i) χ1(ỹ) = χ2(ỹ) for all ỹ ∈ (ŷ − ε, ŷ) ∩ YΛ

or (ii) χ1(ỹ1) < χ2(ỹ2) for all ỹ1, ỹ2 ∈ (ŷ − ε, ŷ) ∩ YΛ. We will now show that

α([0, ỹ]) = α′([0, ỹ]) for all ỹ ∈ (ŷ− ε, ŷ) contradicting the definition of ŷ. Since χ2 is

increasing, states x > χ2(ỹ) can only induce actions y > ỹ. Thus, since γ is bijective

from Λ to YΛ and since α([0, y]) = α′([0, y]) for all y ≥ ŷ, in both cases (i) and (ii),

we have, for all ỹ ∈ (ŷ − ε, ŷ) ∩ YΛ,

φ((χ2(ỹ), 1])− φ([χ2(ỹ), 1]) ≤
∫

[ỹ,ŷ]

(1− ρy)dα(y)−
∫

[ỹ,ŷ]

(1− ρy)dα′(y)

≤ φ([χ2(ỹ), 1])− φ((χ2(ỹ), 1]).

Moreover, since φ has a density, we have φ((χ2(ỹ), 1]) = φ([χ2(ỹ), 1]), and hence∫
[ỹ,ŷ]

(1− ρy)dα(y) =

∫
[ỹ,ŷ]

(1− ρy)dα′(y).

Then, since 1− ρy > 0 for all y ∈ YΛ, and since supp(α) ⊂ YΛ and supp(α′) ⊂ YΛ, it

follows that α([ỹ, ŷ]) = α′([ỹ, ŷ]) for all ỹ ∈ (ŷ−ε, ŷ). Thus, since α([0, y]) = α′([0, y])

for all y ≥ ŷ, it follows that α([0, ỹ]) = α′([0, ỹ]) for all ỹ ∈ (ŷ − ε, ŷ).

F.13. Proof of Remark 4. The proof of Remark 4 remains valid if Assumption 4

is replaced with strict single-crossing of u in x.

Suppose by contradiction that Λ contains µ = ρδx1 + (1 − ρ)δx2 , with x1 < x2 and

ρ ∈ (0, 1). Denote y = γ(µ) and x = χ(y). By strict single-crossing of u in x, we have

x1 < x < x2. Since X = [0, 1] and full disclosure is optimal, we have δx ∈ Λ. Thus,

ρp(x1) + (1− ρ)p(x2) = ρV (y, x1) + (1− ρ)V (y, x2) and p(x) = V (y, x).

Adding the two equalities gives

ρ
2
p(x1) + 1

2
p(x) + 1−ρ

2
p(x2) = 1

2
ρV (y, x1) + 1

2
V (y, x) + 1

2
(1− ρ)V (y, x2),

which shows that η = ρδx1/2 + δx/2 + (1− ρ)δx2/2, contradicting that Λ is pairwise.

F.14. Proof of Theorem 5. The proof of Theorem 5 remains valid without As-

sumption 4 and when X is an arbitrary compact metric space. The support of the

full disclosure signal is the set of all degenerate posteriors on X. Thus, by Lemmas 1
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and 2, full disclosure is optimal iff there exists q ∈ B(Y ) such that

V (γ(δx), x) ≥ V (y, x) + q(y)u(y, x), for all (y, x) ∈ Y ×X,

⇐⇒ V (y, x1)− V (γ(δx1), x1)

−u(y, x1)
≤ q(y) ≤ V (γ(δx2), x2)− V (y, x2)

u(y, x2)
,

for all y ∈ Y and x1, x2 ∈ X such that u(y, x1) < 0 < u(y, x2). As shown in the

proof of Lemma 2, the left-hand side and right-hand side functions are bounded on

Y × X, so full disclosure is optimal iff, for all y ∈ Y and x1, x2 ∈ X such that

u(y, x1) < 0 < u(y, x2), we have

V (y, x1)− V (γ(δx1), x1)

−u(y, x1)
≤ V (γ(δx2), x2)− V (y, x2)

u(y, x2)
,

⇐⇒ u(y, x2)V (y, x1)− u(y, x1)V (y, x2) ≤ u(y, x2)V (γ(δx1), x1)− u(y, x1)V (γ(δx2), x2),

⇐⇒ ρV (γ(µ), x1) + (1− ρ)V (γ(µ), x2) ≤ ρV (γ(δx1)), x1) + (1− ρ)V (γ(δx2), x2),

where ρ = u(y, x2)/(u(y, x2)− u(y, x1)), µ = ρδx1 + (1− ρ)δx2 , and γ(µ) = y, by the

definition of γ(µ). To complete the proof that full disclosure is optimal iff (7) holds

for all µ, note that for each y and x1, x2 ∈ X such that u(y, x1) < 0 < u(y, x2), we

have ρ = u(y, x2)/(u(y, x2)− u(y, x1)) ∈ (0, 1); and conversely, for each x1 < x2 and

ρ ∈ (0, 1), there exists a unique y ∈ (γ(δx1), γ(δx2)) such that ρ = u(y, x2)/(u(y, x2)−
u(y, x1)).

Finally, assume that (7) holds with strict inequality for all µ. Suppose by contradic-

tion that full disclosure is not uniquely optimal. Then, by Lemmas 1 and 2, there exist

η ∈ Λ and distinct x1, x2 ∈ supp(η). By the definition of γ(η), without loss, we can

assume that either u(γ(η), x1) = 0 = u(γ(η), x2) or u(γ(η), x1) < 0 < u(γ(η), x2).

In the case u(γ(η), x1) = 0 = u(γ(η), x2), we have γ(µ) = γ(δx1) = γ(δx1) for

µ = δx1/2 + δx2/2, so

1
2
V (γ(µ), x1) + 1

2
V (γ(µ), x2) = 1

2
V (γ(δx1), x1) + 1

2
V (γ(δx2), x2),

contradicting that (7) holds with strict inequality for µ. In the case u(γ(η), x1) < 0 <

u(γ(η), x2), we have γ(µ) = γ(η) for µ = ρδx1+(1−ρ)δx2 with ρ = u(γ(η), x2)/(u(γ(η), x2)−
u(γ(η), x1) ∈ (0, 1). Since η ∈ Λ and x1, x2 ∈ supp(η), we have

V (γ(η), x1) + q(γ(η))u(γ(η), x1) ≥ V (γ(δx1), x1),

V (γ(η), x2) + q(γ(η))u(γ(η), x2) ≥ V (γ(δx2), x1).
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Adding the first inequality multiplied by ρ and the second inequality multiplied by

1− ρ gives

ρV (γ(µ), x1) + (1− ρ)V (γ(µ), x2) ≥ ρV (γ(δx1), x1) + (1− ρ)V (γ(δx2), x2),

contradicting that (7) holds with strict inequality for µ.

F.15. Proof of Corollary 2’. Condition (7) holds because

ρV (ρx1 + (1− ρ)x2, x1) + (1− ρ)V (ρx1 + (1− ρ)x2, x2)

≤ρ(ρV (x1, x1) + (1− ρ)V (x2, x1)) + (1− ρ)(ρV (x1, x2) + (1− ρ)V (x2, x2))

≤ρV (x1, x1) + (1− ρ)V (x2, x2),

where the first inequality holds because V (y, x) is convex in y, and the second holds

because V (x1, x2) + V (x2, x1) ≤ V (x1, x1) + V (x2, x2).

F.16. Proof of Corollary 3. Noting that ρu(γ(µ), x1) + (1− ρ)u(γ(µ), x2) = 0 and

denoting y = γ(µ), we infer that (12) fails if there exist x1 < x2 such that for all

y ∈ (γ(δx1), γ(δx2)), we have

u(y, x2)(V (y, x1)− V (γ(δx1), x1))− u(y, x1)(V (y, x2)− V (γ(δx2), x2)) ≤ 0.

By Taylor’s theorem and some algebra, we get

u(y, x2)(V (y, x1)− V (γ(δx1), x1))− u(y, x1)(V (y, x2)− V (γ(δx2), x2))

=
1

2
uy(y, χ(y))

(
Vyy(y, χ(y))− Vy(y, χ(y))uyy(y, χ(y))

uy(y, χ(y))

−2
Vyx(y, χ(y))uy(y, χ(y))− Vy(y, χ(y))uyx(y, χ(y))

ux(y, χ(y))

)
·(y − γ(δx1))(γ(δx2)− y)(γ(δx2)− γ(δx1))

+o((y − γ(δx1))(γ(δx2)− y)(γ(δx2)− γ(δx1))).

Hence, if (13) fails at some y, then there exist x2 > x1 with γ(δx2) − y > 0 and

y − γ(δx1) > 0 small enough such that (12) fails for all ρ ∈ (0, 1).

Note that dχ(y)/dy = −uy(y, χ(y))/ux(y, χ(y)), by the implicit function theorem

applied to u(y, χ(y)) = 0. Thus, the derivative of q(y) = −Vy(y, χ(y))/uy(y, χ(y)) is

given by

q′(y) = −Vyy(y, χ(y))

uy(y, χ(y))
+
Vyx(y, χ(y))

ux(y, χ(y))
+
Vy(y, χ(y))uyy(y, χ(y))

(uy(y, χ(y)))2
−Vy(y, χ(y))uyx(y, χ(y))

uy(y, χ(y))ux(y, χ(y))
.
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Conversely, suppose that (13), together with all other assumptions of the corollary,

holds. Then, for y > γ(δx), we have

V (y, x)− Vy(y, χ(y))

uy(y, χ(y))
u(y, x)− V (γ(δx), x)

=(V (ỹ, x) + q(ỹ)u(ỹ, x))|yγ(δx)

=

∫ y

γ(δx)

[Vy(ỹ, x) + q(ỹ)uy(ỹ, x) + q′(ỹ)u(ỹ, x)]dỹ

≥
∫ y

γ(δx)

[
Vy(ỹ, x)− Vy(ỹ, χ(ỹ))

uy(ỹ, χ(ỹ))
uy(ỹ, x)

]
dỹ

+

∫ y

γ(δx)

[
Vy(ỹ, χ(ỹ))uyx(ỹ, χ(ỹ))

uy(ỹ, χ(ỹ))ux(ỹ, χ(ỹ))
− Vyx(ỹ, χ(ỹ))

ux(ỹ, χ(ỹ))

]
u(ỹ, x)dỹ

=

∫ y

γ(δx)

∫ χ(ỹ)

x

[
Vy(ỹ, χ(ỹ))

uy(ỹ, χ(ỹ))
uyx(ỹ, x̃)− Vyx(ỹ, x̃)

]
dx̃dỹ

+

∫ y

γ(δx)

∫ χ(ỹ)

x

[
Vyx(ỹ, χ(ỹ))

ux(ỹ, χ(ỹ))
− Vy(ỹ, χ(ỹ))uyx(ỹ, χ(ỹ))

ux(ỹ, χ(ỹ))

]
ux(ỹ, x̃)dx̃dỹ

=

∫ y

γ(δx)

∫ χ(ỹ)

x

[
Vyx(ỹ, χ(ỹ))

ux(ỹ, χ(ỹ))
− Vyx(ỹ, x̃)

ux(ỹ, x̃)

]
ux(ỹ, x̃)dx̃dỹ

+

∫ y

γ(δx)

∫ χ(ỹ)

x

Vy(ỹ, χ(ỹ))

−uy(ỹ, χ(ỹ))

[
uyx(ỹ, χ(ỹ))

ux(ỹ, χ(ỹ))
− uyx(ỹ, x̃)

ux(ỹ, x̃)

]
ux(ỹ, x̃)dx̃dỹ > 0,

where the first and last equalities are by rearrangement, the second and third equal-

ities are by the fundamental theorem of calculus, the first inequality is by (13) and

substitution of q(ỹ) and q′(ỹ), and the last inequality is by our assumptions imposed

in the corollary.

By Taylor’s theorem, we have, for x1 < x2 and y ∈ (γ(δx1), γ(δx2)),

u(y, x2)(V (y, x1)− V (γ(δx1), x1))− u(y, x1)(V (y, x2)− V (γ(δx2), x2))

=

[
V (γ(δx2), x1)− Vy(γ(δx2), x2)

uy(γ(δx2), x2)
u(γ(x2), x1)− V (γ(δx1), x1)

]
·(−uy(γ(δx2), x2))(γ(δx2)− y) + o(γ(δx2)− y).

Hence (12) holds for sufficiently small ρ > 0.

F.17. Proof of Proposition 1. Define the weak order % on ∆(X) by µ % η if

γ̃(µ) ≥ γ̃(η). Clearly, γ̃ satisfies Betweenness and Continuity iff % satisfies Axioms

A1(a), A2’, and A4 in Dekel (1986). Thus, by his Proposition A.1, together with the
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characterization (**) in Proposition 1 and the argument in Section 3.C, γ̃ satisfies

Betweenness and Continuity iff there exists a continuous function û from [0, 1] × X
to [0, 1] such that µ % η ⇐⇒ γ̂(µ) ≥ γ̂(µ), where γ̂(µ), for any µ ∈ ∆(X), is defined

implicitly as the unique ŷ ∈ [0, 1] satisfying∫
X

û(ŷ, x)dµ(x) = (<)ŷ ⇐⇒ y = (>)ŷ.

In Dekel’s construction, γ̂ is continuous and thus there exists a continuous and strictly

increasing function γ̌ such that γ̂(µ) = γ̌(γ̃(µ)) for all µ ∈ ∆(X). Then, u defined by

u(y, x) = û(γ̌(y), x)− γ̌(y) for all (y, x) is as stated in the proposition.

F.18. Proof for Example 2. First, notice that the outcome π that corresponds to

the proposed signal is implementable. (BP’) holds because, for all y ∈ [y, 1], the

marginal distribution over actions satisfies

απ([a, 1]) = φ([0, χ1(y)]) + φ([a, 1]),

and the posterior conditional on y is

πy =
dφ([0, χ1(y)])

dφ([0, χ1(y)] + dφ([a, 1])
δχ1(y) +

dφ([a, 1])

dφ([0, χ1(y)] + dφ([a, 1])
δχ1(y),

as follows from κφ([0, χ1(y)]) = (1− κ)φ([a, 1]), which implies that κdφ([0, χ1(y)]) =

(1−κ)dφ([a, 1]) and that χ1 is a continuous, strictly decreasing function. (OB) holds

because, for all y ∈ [y, 1],

Eπy [u(y, x)] = Eπy [1{x ≥ y} − κ] = πy([y, 1])− κ = 0.

Consider now any other implementable outcome π̃. By (OB), there exists π̃y with

π̃y([y, 1]) ≥ κ, as otherwise Eπ̃y [u(y, x)] < 0. Thus, by (BP’), απ̃([y, 1]) ≤ φ([y, 1])/κ,

as follows from

φ([y, 1]) =

∫
Y

π̃ỹ([y, 1])dαπ̃(ỹ) ≥
∫ 1

y

π̃ỹ([y, 1])dαπ̃(ỹ) ≥ καπ̃([y, 1]).

Since απ([y, 1]) = φ([y, 1])/κ, it follows that απ first-order stochastically dominates

απ̃, and thus, for an increasing V ,∫
Y×X

V (y)dπ(y, x) =

∫
Y

V (y)dαπ(y) ≥
∫
Y

V (y)dαπ̃(y) =

∫
Y×X

V (y)dπ̃(y, x),

showing that π is optimal.

F.19. Proof for Example 3. We will show that Λ = {δχ1(y)/2 + δχ2(y)/2 : y ∈
[−1, 1]}. Then, by Theorem 7, there is a unique optimal signal. Consider a signal τ
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that induces the distribution over actions α and the only posterior inducing each ac-

tion y ∈ supp(α) is µ = δχ1(y)/2 + δχ2(y)/2. By construction, supp(τ) ⊂ Λ. Moreover,∫
µdτ(µ) = φ, because, for each y ∈ [0, 1],

φ([χ2(y), 3]) = φ([3y, 3]) = 1
2
α([y, 1]),

φ([−1, χ1(−y)]) = φ([−1,−y]) = α([−1,−y]) + 1
2
α([y, 1]).

Hence τ is optimal. Finally, the following lemma shows that Λ is as stated.

Lemma 14. Functions

p(x) =

T (2x), x ∈ [−1, 0),

3T (2
3
x), x ∈ [0, 3],

and q(y) =


2T ′(2y)
T ′(0)

, y ∈ [−1, 0),

2, y ∈ [0, 3].

satisfy (ZP’) with equality if y ∈ [−1, 1] and x ∈ {χ1(y), χ2(y)}, and strict inequality

otherwise.

Proof of Lemma 14. Since T is symmetric about 0 (i.e., T (x− y) = −T (y − x)) and

T ′ is strictly log-concave, it follows that T ′(0) > T ′(z) for all z 6= 0 and T (z) is

strictly concave for z ≥ 0. Hence, if z′1 ≤ z1 ≤ z2 ≤ z′2, (z′1, z
′
2) 6= (z1, z2), and

ρ′z′1 + (1 − ρ′)z′2 = ρz1 + (1 − ρ)z2, for some z1, z2, z
′
1, z
′
2 ≥ 0 and ρ, ρ′ ∈ (0, 1), then

ρ′T (z′1) + (1− ρ)T (z′2) < ρT (z1) + (1− ρ)T (z2), by Jensen’s inequality.

We split the analysis into six cases.

(1) For y ∈ [0, 3] and x ∈ [y, 3], (ZP’) simplifies to

3T (2
3
x) ≥ T (2y) + 2T (x− y),

which holds with equality for x = 3y = χ2(a) and strict inequality for x 6= 3y.

(2) For y ∈ [0, 3] and x ∈ (0, y), (ZP’) simplifies to

3T (2
3
x) + 2T (y − x) ≥ T (2y) + 4T (0),

which always holds with strict inequality.

(3) For y ∈ [0, 3] and x ∈ [−1, 0], (ZP’) simplifies to

2T (y − x) ≥ T (2y) + T (−2x),

which holds with equality for x = −y = χ1(y) and strict inequality for x 6= −y.

(4) For y ∈ [−1, 0) and x ∈ [0, 3], (ZP’) simplifies to

3T (2
3
x) + T (−2y) ≥ q(y)T (x− y) + 2T (0),
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which always holds with strict inequality because q(y) < 2 and T (x− y) > 0.

(5) For y ∈ [−1, 0) and x ∈ (y, 0), (ZP’) simplifies to

T (−2y) ≥ T (−2x) + q(y)T (x− y),

which is equivalent to

T (−2y)− T (−2x)

T ′(−2y)(−2y + 2x)
≥ T (x− y)− T (0)

T ′(0)(x− y)
,

which always holds with strict inequality because T (z) is strictly concave for z ≥ 0,

and thus the left-hand side is strictly greater than 1 whereas the right-hand side is

strictly less than 1.

(6) For y ∈ [−1, 0) and x ∈ [−1, y], (ZP’) simplifies to

T (−2y) + q(y)T (y − x) ≥ T (−2x),

which holds with equality for x = y = χ1(y). For x < y, the inequality is equivalent

to
T (y − x)− T (0)

T ′(0)(y − x)
≥ T (−2x)− T (−2y)

T ′(−2y)(−2x+ 2y)
,

which always holds with strict inequality because

T (−2x)− T (−2y)

T ′(−2y)(2y − 2x)
=

1

2y − 2x

∫ 2(y−x)

0

T ′(z − 2y)

T ′(−2y)
dz

<
1

2y − 2x

∫ 2(y−x)

0

T ′(z)

T ′(0)
dz

=
T (2y − 2x)− T (0)

T ′(0)(2y − 2x)

<
T (y − x)− T (0)

T ′(0)(y − x)
,

where the first inequality holds because T ′ is strictly log-concave, and the second

inequality holds because T (z) is strictly concave for z ≥ 0. �

F.20. Proof of Proposition 2. Recall that most results remain valid if the condition

ux(y, x) > 0 in Assumption 4 is replaced with strict single-crossing of u(y, x) in

x. Clearly, γ(µ) = Eµ[x]/(1 + Eµ[x2]). To ensure that Assumption 3 holds, we

normalize Y = [minx∈[x,x] γ(δx),maxx∈[x,x] γ(δx)]. Assumptions 1 and 2 obviously

hold. Moreover, since γ(δx) is strictly increasing on [0, 1] and strictly decreasing on

[1,+∞), it follows that u(γ(δx), x
′) > 0 if x < x′ ≤ 1 and if 1 ≤ x′ < x. Thus, if

x ≤ 1, then u(y, x) satisfies strict single-crossing in x, whereas, if x ≥ 1, u(y, x) also
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satisfies strict single-crossing in x once the state is redefined as −x. So Theorems 2,

3, 5, and 6 apply.

Lemma 15 replicates Lemma 1 and Proposition 3 in Zhang and Zhou (2016).

Lemma 15. If x1 < x2 and x1x2 > (<)1, then ρV (γ(δx1), x1)+(1−ρ)V (γ(δx2), x2) >

(<)ρV (γ(µ), x1) + (1− ρ)V (γ(µ), x2) for all ρ ∈ (0, 1).

Proof. For µ = ρδx1 + (1 − ρ)δx2 , γ(µ) = (ρx1 + (1− ρ)x2)/(1 + ρx2
1 + (1− ρ)x2

2).

Thus, if x1 < x2 and x1x2 > (<)1, we have

d

dρ
γ(µ) =

(x2 − x1)(x1x2 − 1)

(1 + ρx2
1 + (1− ρ)x2

2)2
> (<)0,

d2

dρ2
γ(µ) =

(x2 − x1)(x1x2 − 1)(x2
2 − x2

1)

(1 + ρx2
1 + (1− ρ)x2

2)3
> (<)0.

Define ϕ(ρ) = γ(µ) (ρ/x1 + (1− ρ)/x2). Thus, if x1 < x2 and x1x2 > (<)1, we have

ϕ′′(ρ) =

(
ρ

x1

+
1− ρ
x2

)
d2

dρ2
γ(µ) + 2

(
1

x1

− 1

x2

)
d

dρ
γ(µ) > (<)0,

so ϕ is strictly convex (concave), and ρϕ(1) + (1− ρ)ϕ(0) > (<)ϕ(ρ). �

If x ≥ 1, then x1x2 > 1 for all x1 ≤ x1 < x2, so full disclosure is uniquely optimal by

Theorem 5 and Lemma 15. Assume henceforth that x ≤ 1.

After some algebra, we get, for all y and x1 < x2 < x3,

|S| = (x3 − x2)(x3 − x1)(x2 − x1)(1− x2x3 − x1x3 − x1x2)

x1x2x3

If x ≤ 1/
√

3 (x ≥ 1/
√

3), then |S| > (<)0 for all x1 < x2 < x3 ≤ x (x ≤ x1 < x2 <

x3), so Λ is pairwise by Theorem 2. Proposition 4 in Zhang and Zhou (2016) derives

a version of this result for a finite set X.

Moreover, if x ≤ 1/
√

3 (x ≥ 1/
√

3), then Λ is single-dipped (-peaked), as follows from

Theorem 3 with

β =

u(y2, x3)u(y1, x2)− u(y2, x2)u(y1, x3)

u(y2, x3)u(y1, x1)− u(y2, x1)u(y1, x3)

u(y2, x2)u(y1, x1)− u(y2, x1)u(y1, x2)


β = −

u(y2, x3)u(y1, x2)− u(y2, x2)u(y1, x3)

u(y2, x3)u(y1, x1)− u(y2, x1)u(y1, x3)

u(y2, x2)u(y1, x1)− u(y2, x1)u(y1, x2)


 ,
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because, for y < y′ and x < x′ with xx′ < 1, we have

u(y′, x′)u(y, x)− u(y′, x)u(y, x′) = (y′ − y)(x′ − x)(1− xx′) > 0,

and

Rβ =

(y2 − y1)2|S|
0

0

 

0

0

0


Rβ =

−(y2 − y1)2|S|
0

0

 

0

0

0


 .

Thus Λ is strictly single-dipped (-peaked) if x ≤ 1/
√

3 (x ≥ 1/
√

3). Finally, since,

by Lemma 15, (12) holds for all ρ ∈ (0, 1), Theorem 6 yields that, if x ≤ 1/
√

3

(x ≥ 1/
√

3), then the optimal signal is unique and single-dipped (-peaked) negative

assortative.

F.21. Proof of Proposition 3. Suppose by contradiction that an optimal outcome

assigns positive probability to a strictly single-dipped triple (y1, x1), (y2, x2), (y1, x3),

with x1 < x2 < x3, y2 < y1, and x1 ≤ x0 ≤ x3. Consider a perturbation that

reallocates mass β1ε on x1 and mass β3ε on x3 from y1 to y2, while reallocating mass

β2ε on x2 from y2 to y1 where ε > 0 is small enough and β = (β1, β2, β3) is given by

β =


(

0, 1
(x2−x0)g(y2|x2)

, 1
(x2−x0)g(y2|x3)

)
, x2 > x0,

(0, 1, 0) , x2 = x0,(
1

(x0−x1)g(y1|x1)
, 1

(x0−x2)g(y1|x2)
, 0
)
, x2 < x0,

where x1 < x2 < x3, y2 < y1, and x1 ≤ x0 ≤ x3. We focus on the case x0 < x2, as

the other cases are analogous. The above perturbation increases action y1, because,

by strict log-submodularity of g,

u(y1, x2)y2 − u(y1, x3)y3 =
g(y1|x2)

g(y2|x2)
− g(y1|x3)

g(y2|x3)
> 0.

Moreover, the same perturbation also increases the sender’s expected utility for fixed

y1, y2. This follows because

(V (y1, x2)− V (y2, x2))y2 − (V (y1, x3)− V (y2, x3))y3

=

(
G(y1|x2)−G(y2|x2)

(x2 − x0)g(y2|x2)
− G(y1|x3)−G(y2|x3)

(x3 − x0)g(y2|x3)

)
>

1

(x2 − x0)

(
G(y1|x2)−G(y2|x2)

g(y2|x2)
− G(y1|x3)−G(y2|x3)

g(y2|x3)

)
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=
1

(x2 − x0)

∫ y1

y2

(
g(t|x2)

g(y2|x2)
− g(t|x3)

g(y2|x3)

)
dt ≥ 0,

where the first inequality is by x0 < x2 < x3 and the second inequality is by log-

submodularity of g. Thus, this perturbation is strictly profitable for the sender, so

every optimal outcome is single-peaked.

F.22. Proof of Proposition 4. As shown by Kamenica and Gentzkow (2011), there

exists an optimal outcome with a finite support. Suppose the support contains a

strictly single-peaked triple (y1, x1), (y2, x2), (y1, x3), with x1 < x2 < x3, y1 < a2, and

x1 < a1 < x3. Notice that V (y1, x3) 6= −∞ (so y1 ≥ σ(x3)), as otherwise the sender’s

expected utility would be −∞, which cannot be optimal. Taking into account that

σ(x) = x for x ≤ x0 gives y1 > x0. Thus, the first row in R is zero. Consider a

perturbation that shifts weights β1 = (x3 − x2)ε and β3 = (x2 − x1)ε on x1 and x3

from y1 to y2 and shifts weight β2 = (x3 − x1)ε from y2 to y1, where ε takes the

maximum value such that β1 ≤ π({(y1, x1}), β2 ≤ π({(y2, x2}), β3 ≤ π({(y1, x3}), so

that a strictly single-peaked triple is removed. This perturbation holds fixed y1 and

y2 and thus does not change the sender’s expected utility, since the first row in R is

zero. Repeating such perturbations until all strictly single-peaked triples are removed

(a finite number of times since supp(π) is finite) yields a single-dipped outcome that

is weakly preferred by the sender.
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