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Abstract

We study a communication game between an informed sender and an uninformed
receiver with repeated interactions and voluntary transfers. Transfers motivate the
receiver’s decision-making and signal the sender’s information. Although full sepa-
ration can always be supported in equilibrium, partial or complete pooling is optimal
if the receiver’s decision-making is too responsive to information. In this case, the re-
ceiver’s decision-making is disciplined by pooling extreme states, where she is most
tempted to defect. In characterizing optimal equilibria, we establish new results on

monotone persuasion.
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1 Introduction

Decision-makers and informed parties often develop relationships in which communica-
tion and decision-making are governed by informal agreements. We study how such
interactions can be disciplined using relational contracts: discretionary compensation
schemes that are self-enforcing in a repeated game. We characterize communication and
decision-making patterns in optimal equilibria.

As an example of such relational communication, consider the interaction between
lobbyists and politicians. Lobbyists seek to influence politicians’ policy decisions.! They
provide politicians with information about the electoral and economic consequences of
various policy choices, such as focus group attitudes towards potential tobacco regula-
tions, or the impact of cigarette smoking on health outcomes. Lobbyists also make trans-
fers to politicians, in the form of political contributions. Such transfers serve as contin-
gent contributions for favorable policy decisions (Grossman and Helpman 1994, 1996)
and credible signals of lobbyists” information (Austen-Smith 1995 and Lohmann 1995).

While political contributions are legal in many countries, explicit payments for policy
decisions usually constitute illegal bribery and political corruption. Consequently, agree-
ments between politicians and lobbyists are largely implicit and supported by trust and
reputation. Indeed, lobbyists often maintain long-standing relationships with politicians.

Another example of relational communication is decision-making in organizations,
which are often governed by informal agreements — “firms are riddled with relational
contracts” (Baker, Gibbons and Murphy 2002). Consider a subordinate who implements
a project, and a superior who has relevant information. The superior may advise or even
instruct the subordinate, but it is the subordinate who decides how to implement the
project.” Besides giving advice, the superior often pays the subordinate to influence im-
plementation. Payments may take the form of wages, bonuses, raises, and gifts. Pay-
ments may directly reward the subordinate for compliant implementation. Payments
may also give credibility to the superior’s advice — “the leader offers gifts to the follow-
ers ... because the leader’s sacrifice convinces them that she must truly consider this to be
a worthwhile activity” (Hermalin 1998).

Our analysis of relational communication is based on an infinitely-repeated commu-
nication game, played by a sender and a receiver who can make voluntary transfers to

each other at any point in the game. In each period, the sender privately observes an

1See Grossman and Helpman (2001) and Persson and Tabellini (2002) for reviews.

2Similar to us, Landier, Sraer and Thesmar (2009) and Van den Steen (2010) consider situations with a
subordinate as a decision-maker implementing a project and a superior as an informed party giving advice.
See Section 3.4 of Gibbons, Matouschek and Roberts (2013) for a review.



independent draw of the state and sends a message to the receiver, who then makes a
decision. The players’ preferred decisions are increasing in the state, but the magnitude
and sign of the sender’s bias may depend on the state.’

In relational communication, transfers allow the sender not only to reward the receiver
for compliant decision-making, but also to credibly signal his private information. In
particular, full separation can be supported in equilibrium, even when the players are
impatient. Therefore, the essential incentive constraint is that the receiver is tempted to
make decisions that benefit herself but hurt the sender.

We show that a message rule can be supported in equilibrium if and only if it is mono-
tone: it induces a monotone partition of the set of states. In any (Pareto) optimal equilib-
rium, the decision rule simply maximizes, subject to the receiver’s incentive constraint,
the joint payoff for each message. Therefore, given this decision rule, the optimal message
rule solves the monotone persuasion problem: it maximizes the expected joint payoff over
all monotone message rules. We establish new results on optimal monotone persuasion
and discuss how the monotonicity restriction affects the optimal message rule.

We completely characterize the optimal (second-best) equilibrium when the players’
payoffs are quadratic. Our key insight is that the optimal equilibrium may involve (par-
tial or complete) pooling of information. Pooling is optimal only if the receiver is too
responsive to information (the slope of the receiver’s preferred decision with respect to
the state is sufficiently large relative to that of the sender). In this case, pooling occurs at
states of extreme conflict (where the sender’s bias is sufficiently large).

Intuitively, the receiver’s incentive constraint requires that any feasible decision be
close to the receiver’s preferred decision. First-best decision-making cannot be supported
for extreme states. Further, if the receiver is too responsive, then second-best decision-
making is too responsive to information about extreme states relative to the first-best; so
extreme states are optimally pooled.

The result that the sender reveals (hides) information when conflict of interest is mod-
erate (extreme) seems to be a natural pattern of communication in relationships. Lobby-
ists often discuss in detail the costs and benefits of potential legislation with politicians,
but may hide their private information in cases that are particularly controversial or con-
sequential. For example, the tobacco lobby concealed and distorted evidence from in-
ternal studies that cigarettes caused lung cancer (Hilts 1994 and Harris 2008), to soften

regulation of tobacco products by Congress. In organizations, superiors provide honest

3We also argue that the main insights from our analysis apply in more general settings. Specifically,
in Section 7, we discuss the following extensions: exogenous outside options for the players; imperfect
monitoring of the receiver’s decision; and correlation of states across time.
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advice and subordinates comply when their preferences are largely aligned, but superiors
may hide information when subordinates are most tempted to dissent or disobey.

An implication of our analysis is that in settings where voluntary transfers are avail-
able, incomplete information transmission does not imply a failure to motivate commu-
nication, but instead is a tool to discipline decision-making. In other words, the Pareto
frontier cannot be expanded simply by introducing a technology for credible (monotone)
communication.* This point provides a rationale for the separation of information and
control in organizations. Indeed, we show that increasing organizational transparency
and delegating the decision right to an informed player generally decreases the efficiency

of informal relationships.

1.1 Related Literature

Our analysis builds on an extensive literature on repeated interactions with transfers. The
seminal papers by Bull (1987) and Macleod and Malcomson (1989) focus on settings with
symmetric information. Levin (2003) characterizes the optimal relational contract in two
important settings with asymmetric information: adverse selection and moral hazard. In
these settings, only the decision-maker (agent) has private information, so there is no role
for information transmission between the principal and agent. In contrast, our setting
involves an informed sender and an uninformed decision-maker (receiver), in the vein
of Crawford and Sobel (1982). In such relational communication, pooling serves to affect
the receiver’s beliefs and thus directly improves her decision-making. In contrast, the
decision-maker (agent) in Levin (2003) is fully informed, so pooling has no such effect.

Alonso and Matouschek (2007) also consider repeated communication. In contrast to
us, they disallow transfers and consider a sequence of short-lived senders rather than
a single long-lived sender.” In their setting, repeated interaction disciplines decision-
making, in order to sustain more informative communication. In contrast, in our setting,
credible communication is easy to achieve; so repeated interaction improves decision-
making which in turn determines the informativeness of optimal communication.

In our model, transfers from the sender to the receiver are used to signal informa-
tion.® Austen-Smith and Banks (2000) and Kartik (2007) consider a related (albeit static)

4This is in contrast with the existing literature on cheap talk and delegation, where the receiver’s ex-
pected payoff (which is the standard welfare criterion) unambiguously improves if credible communication
can be costlessly achieved.

SBaker, Gibbons and Murphy (2011) consider a model of repeated decision-making with transfers be-
tween long-lived players, but assume symmetric information, so communication plays no role.

6Ottaviani (2000), Krishna and Morgan (2008), and Ambrus and Egorov (2017) consider communica-
tion games with contractible transfers (in contrast to the voluntary transfers in our setting). In their set-
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setting where the sender burns money to signal information.” Unlike burning money,
signaling information with transfers incurs no welfare cost. This leads to a clean charac-
terization of the set of optimal equilibria; in particular, all optimal equilibria in our model
produce identical communication outcomes.® As a byproduct, we establish a general
characterization of equilibria in games of cheap talk with burned money: a message rule
is implementable if and only if it is monotone.

In our model, optimal equilibria are supported by carrot-and-stick strategies (Abreu
1986 and Goldliicke and Kranz 2012), in which a deviator is punished as harshly as pos-
sible but only for a single period. We show that the receiver is punished by complete
pooling of information and the sender is punished by an extreme incentive compatible
decision. These punishments also characterize the receiver’s and sender’s worst equilib-
ria in games of cheap talk with burned money.

We establish equivalence between optimal relational communication and monotone
persuasion. This is a Bayesian persuasion problem (Rayo and Segal 2010 and Kamenica
and Gentzkow 2011) with a restriction to monotone message rules.” Dworczak and Mar-
tini (2018), Kolotilin (2018), and Mensch (2018) derive conditions under which a mono-
tone message rule is optimal among all (possibly nonmonotone) message rules. Kolotilin
and Zapechelnyuk (2018) show that the monotone persuasion problem is equivalent to
the delegation problem. In contrast to these papers, we explicitly characterize the opti-
mal monotone message rule when it differs from the optimal (nonmonotone) message
rule. Our approach relies on the representation of message rules as convex functions, as
in Gentzkow and Kamenica (2016) and Kolotilin et al. (2017).

Our paper also contributes to the rapidly growing literature on Bayesian persuasion
with transferable utility (Bergemann and Pesendorfer 2007, Es6 and Szentes 2007, Li and
Shi 2017, Bergemann, Bonatti and Smolin 2018, and Dworczak 2017). Similarly to these
papers, we use tools from mechanism design and Bayesian persuasion. Unlike these

papers, commitment power in our model is endogenous and thus imperfect.

tings, transfers are from the receiver to the sender, and thus cannot be used to signal information. Bester
and Krdahmer (2017) consider a related setting with contractible transfer schemes and study the optimal
allocation of authority, similar to Dessein (2002).

7Kartik, Ottaviani and Squintani (2007) and Kartik (2009) consider related models with lying costs in-
stead of money burning.

81n the setting with burned money, equilibrium communication outcomes differ along the Pareto fron-
tier because there is a tradeoff between the informativeness of communication and the costs of burning
money. The receiver’s optimal equilibrium clearly involves full separation; Karamychev and Visser (2017)
characterize the sender’s optimal equilibrium.

A model of repeated (monotone) persuasion would reproduce many of the insights from our model
of relational communication. The existing literature has studied dynamic Bayesian persuasion, albeit with
persistent information (Kremer, Mansour and Perry 2014, Au 2015, Ely, Frankel and Kamenica 2015, Horner
and Skrzypacz 2016, Ely 2017, Che and Horner 2018, and Orlov, Skrzypacz and Zryumov 2018).

4



2 Model

2.1 Setup

A sender (S) and a receiver (R) play an infinitely repeated communication game with
perfect monitoring and with voluntary transfers. Time is discrete and the players have a
common discount factor § € [0,1). In each period, the same stage game is played. The
sender privately observes a state § € [0,1] and sends a message m C [0, 1] to the receiver,
who then makes a decision d € R. The state 0 is independently drawn each period from a
prior distribution F(6) with a strictly positive density f(0) for all 6 € [0, 1]. The sender’s
and receiver’s payoffs are functions ug (d,0) and ug (d, 0) that satisfy Crawford and Sobel
(1982)’s assumptions:

Assumption 1. For each player i € {S, R},
1. u;(d,0) is twice differentiable in d and 0 for alld € Rand 6 € [0,1],

2. L4(d,0) < 0foralld € Rand 0 € [0,1],

3. %(p,'(()), ) = 0 for some function p;(8) and for all 6 € [0,1],
4. 24(d,0) > 0foralld € Rand 6 € [0,1].

Parts 2 and 3 of Assumption 1 require that each player’s payoff is strictly concave in
the decision and each player i € {S, R} has a unique preferred decision p;(0) for each state
6 € [0,1]. Similarly, there is a unique first-best decision prp(f) that maximizes the joint
payoff u(d,0) = ug(d,0) + ur(d,0). Part 4 is a sorting condition that ensures that ps(6),
pr(0), and ppp(0) are strictly increasing in 6.

The players can make voluntary (non-contractible) transfers at any point in the game.
Specifically, we enrich the stage game with three rounds of transfers: (i) an ex-ante round
before the sender observes the state, (ii) an interim round after the sender observes the
state and sends the message but before the receiver chooses a decision, and (iii) an ex-
post round after the decision is chosen and the state is publicly observed. In each round,
transfers are made sequentially, first by the sender and then by the receiver. Each player
chooses a non-negative gross transfer to the other player and a non-negative amount of
money to burn. The players’ transfer choices in each round determine their net transfers
in that round. Specifically, the sender’s net transfer equals his gross transfer, minus the
receiver’s gross transfer, plus the sender’s money burned (and similarly for the receiver).
The net transfers by player i € {S,R} in the ex-ante, interim, and ex-post rounds are
denoted by T, t;, and T;; so the stage game payoff of playeriis u; (d,0) — 7; — t; — T;. Note
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sender privately sender sends
observes state 6 message m

sender makes sender makes sender makes
ex-ante transfer interim transfer ex-post transfer
- | | .
c | | i
receiver makes receiver makes receiver makes
ex-ante transfer interim transfer ex-post transfer
receiver chooses
decision d

Figure 1: Timing of stage game

that net transfers in each round must satisty 7s + tr > 0, ts +tg > 0,and Ts + Tr > O,
with strict inequality in the case of burned money.!” Although we allow for both ex-
ante and ex-post transfers, ex-ante transfers can substitute for ex-post transfers (and vice
versa).!!

The game has perfect monitoring in that all actions (message, decision, and transfers)
are immediately publicly observed, but the state is only observed by the sender. That is,
the receiver never observes the state or her payoff.'? Figure 1 summarizes the timing of
each stage game.

We study pure-strategy perfect Bayesian equilibria. For each period and each history,
an equilibrium specifies a message rule y(6) for the sender, a decision rule p(m) for the
receiver, and transfer rules T;, t;(m), T;(m) for each player i € {S,R}.!3

A (pure-strategy) message rule deterministically maps states to the messages they in-
duce. Without loss of generality, we identify each message with the set of states that
induce this message, m = {0 : u(6) = m}. Thus, the range 1([0,1]) of a message rule u
is a partition of the set of states. A message rule y is monotone if each m € u([0,1]) is a
convex set (either a singleton or an interval).

We can now extend the definition of payoffs and preferred decisions from being state
dependent to being message dependent. Specifically, u;(d, m) = Eg[u;(d, 0)|m] and p;(m) =
arg max R #;(d, m) for each player i € {S,R}. Similarly, u(d, m) = ug(d, m) + ug(d, m)
and prp(m) = arg maxyc u(d, m). Assumption 1 ensures that ps(m), pr(m), and prp(m)
are well defined and are strictly increasing in m in the strong set order.

19Conversely, for any net transfers that satisfy these three constraints, we can construct gross transfers
and burned money amounts that correspond to these net transfers.

Thus we may, for example, restrict attention to equilibria where the ex-ante transfers (1, T ) are zero
in every period except the first period. In this case, we may think of the first-period ex-ante transfers as
‘up-front” payments that determine the division of surplus in the relationship.

12This assumption is common in the literature on repeated games with incomplete information (Au-
mann, Maschler and Stearns 1995), and is ubiquitous in models of repeated communication (Renault, Solan
and Vieille 2013, Frankel 2016, Margaria and Smolin 2018, and Lipnowski and Ramos 2018).

13The functions , p, t;, and T; are required to be measurable.
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2.2 Stationarity

An equilibrium is stationary if on the equilibrium path, the message rule y, the decision
rule p, and the transfer rules 1, t;, and T; for i € {S, R} are identical in every period.
An equilibrium is optimal if it is not Pareto dominated by any other equilibrium. An
equilibrium is sequentially optimal if the continuation equilibrium following any history

on the equilibrium path is optimal.

Lemma 1. There exist vg, vg, and T such that the set of equilibrium payoffs V C R? is a simplex
of the form
V = {(vs,vR) : vs > vg, VR > VR, Vs + VR < T} .

Any optimal equilibrium is sequentially optimal and involves no burned money. Further, there
exists a stationary optimal equilibrium o such that any (vs,vr) € V can be supported by an
equilibrium that differs from o, only in the first-period ex-ante transfers.

Lemma 1 extends some of Levin (2003)’s and Goldliicke and Kranz (2012)’s results to
our setting. Because players’ payoffs are quasi-linear in money, payoffs are fully transfer-
able, and contingent transfers can substitute for contingent continuation payoffs. Conse-
quently, we can restrict attention to stationary equilibria, and all optimal equilibria induce
the message and decision rules that maximize joint payoff v = vg + vg. Further, due to
free disposal (both players can burn money), the set of equilibrium payoffs is a simplex.

Optimal equilibria do not involve burned money, because burning money would only
tighten incentive constraints and reduce the joint payoff. Therefore, the Pareto frontier
would not change if we modified the model by disallowing money burning.

3 Equilibrium

3.1 Implementability

Define the receiver’s temptation to deviate from decision d given message m as

w(d,m) = ur(pr(m), m) —ug(d, m),

and the (net) discounted surplus given joint payoff v as

L(v) = 1 f 5(0—25 — UR)- (1)




Proposition 1. A message rule y and a decision rule p that produce a joint payoff v can be
supported in a stationary equilibrium if and only if

p(u(80)) is nondecreasing in 6, ()
w(p(m), m) < L(v) forall m € u([0,1]). (3)

We first argue that (2) and (3) are necessary. In any equilibrium, the message rule
#(0) must be incentive compatible for the sender. Since the sender’s payoff is quasi-
linear in money and satisfies a sorting condition, a standard characterization of incentive
compatibility in mechanism design (see, for example, Rochet 1987) implies that p(u(6))
must be nondecreasing in 6.

Also, in any equilibrium, the decision rule p must be incentive compatible for the re-
ceiver. Therefore, given a message m, the receiver’s one-period payoff gain from choosing
her preferred decision pg(m) instead of equilibrium decision p(m) must be less than the
maximum available punishment equal to the discounted surplus.

We now argue that (2) and (3) are sufficient. Ignoring the sender’s incentive compat-
ibility constraint, any decision rule p that satisfies (3) can be made incentive compatible
for the receiver by giving all surplus to the receiver (vg = v — vg) and threatening her
with her worst equilibrium payoff (vg = vy) following any deviation from p(m).

In such a construction, the sender receives his worst equilibrium payoff vg and thus
cannot be punished for deviating. But for any message rule y that satisfies (2), we can
separately construct a (voluntary) interim transfer rule that makes y incentive compatible
for the sender.

The revenue equivalence theorem (see, for example, Milgrom and Segal 2002) implies
that there exists a unique (up to a constant C) interim transfer rule ¢ such that the sender
prefers to induce p((6)) and pay ts(u(6)) rather than to induce p(u(8)) and pay ts(u(8))
forall § £ 6,

0(m) u o
to(m) = us(p(m), 0m) — [ G o8, 0040 +-C, @

where 6(m) is an arbitrary state 0 € m.!* The constant C can be chosen in such a way
that the sender does not want to deviate to any out-of-equilibrium message-transfer pair

(171, f5). Specifically, choose C such that the minimum transfer is equal to zero and is

4Since p(1(0)) is nondecreasing in 6, t5(m) is independent of the choice of a representative state 6 € m.
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achieved for some punishment message m”, "

ts(m) > 0 for all m € u([0,1]), with equality for some m? € u([0,1]). )

If following any out-of-equilibrium pair (7, f5), the receiver believes that the state is in
mP and chooses the punishment decision d¥ = p(m”), then the sender prefers to report
mP and pay ts(mP) = 0 rather than to report 1 and pay fs. Thus, the sender’s incentive
compatibility constraint is satisfied.

This argument implies that voluntary interim transfers are powerful in signaling in-

formation, even if the players are myopic.'°

Corollary 1. Suppose 6 = 0. A message rule y and a decision rule p can be supported in an
equilibrium if and only if p is monotone and p(m) = pr(m) for all m € u([0,1]).

Corollary 1 is closely connected to existing results from the literature on cheap talk and
burned money (Austen-Smith and Banks 2000, Kartik 2007, and Karamychev and Visser
2017). In the myopic setting, interim transfers serve the same signaling role as burned
money. In fact, the set of implementable message and decision rules does not depend
on whether the sender transfers money to the receiver (g = —ts) or whether the sender
burns money (tg = 0).!”

In contrast to burned money, interim transfers are not wasteful: the sender’s loss is the
receiver’s gain. Further, since ex-ante transfers are available, the use of interim transfers
does not create a distributional imbalance. Any surplus obtained by the receiver from
interim transfers can be redistributed to the sender using ex-ante transfers. Such ex-ante
transfers can be supported by the threat of playing a babbling equilibrium. Consequently,
as we show next, the sender can effectively commit at no welfare cost to any monotone

message rule.

15Tn the proof, we allow for the possibility that inf t5(m) is not attained by any m?”.

16 Although interim transfers are powerful, messages are still used to convey information. For example,
suppose the players’ preferred decision rules intersect at some state. Then in any fully separating equilib-
rium, the interim transfer function is non-monotone and takes the same value for multiple state realizations.
Messages are thus used to distinguish between these realizations.

7Karamychev and Visser (2017)’s Proposition 1 characterizes implementable outcomes with money
burning. Our mechanism design approach to characterization provides a much simpler proof of the re-
sult and removes the assumptions that the sender’s bias has constant sign and that the receiver’s payoff
satisfies a sorting condition. Indeed, if the receiver’s payoff did not satisfy part 4 of Assumption 1, our
Proposition 1 and its proof would still hold, but Corollary 1 would require that pg(#(6)) is nondecreasing
in 6, rather than that y is monotone.



3.2 Optimality

Define the second-best decision given message m as

p«(m) = arg max u(d, m)

subject to w(d, m) < L(0), ©
and the joint payoff under the second-best decision as
ux(m) = u(p«(m),m) forallm C [0,1]. (7)
Proposition 2. In an optimal equilibrium, the message rule is
. € argmax E [u, (1(0))]
g (8)

subject to u is monotone,

and the decision rule is p,.(m) for all m € u.([0,1]).

The intuition for Proposition 2 is as follows. By Proposition 1, an optimal equilibrium
maximizes v jointly over message and decision rules that satisty (2) and (3). The con-
straint (2) implies that we can restrict attention to monotone message rules. Consider a
relaxed problem in which the constraint (2) is replaced with the restriction that the mes-
sage rule is monotone. It is easy to see that p. given by (6) and . given by (8) solve this
relaxed problem. Further, we show that p, () is nondecreasing in m because the sender’s
and receiver’s payoffs satisfy the sorting condition (part 4 of Assumption 1). Therefore,
p«(p«(0)) is nondecreasing in 6, the constraint (2) is automatically satisfied, and p. and
i« constitute an optimal equilibrium.

Proposition 2 shows that the decision rule and message rule in any optimal equilib-
rium can be calculated in two steps. First, the decision rule is characterized without refer-
ence to the message rule. The decision rule is point-wise equal to the second-best decision
p«(m) given by (6). For each message m, the second-best decision p.(m) can be found as
follows. If d = ppp(m) satisfies the constraint of (6), then p.(m) = ppp(m). Otherwise
p«(m) is such that d = p.(m) satisfies the constraint of (6) with equality. Second, given p.
and thus u,, the message rule . solves the monotone persuasion problem (8): it maximizes

the expected joint payoff [E[u.(1(6))] over all monotone message rules y.
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3.3 Punishment

Consider strategy profiles where the ex-post transfers are zero (Ts = Tr = 0) and money
is never burned (75 + Tr = 0 and ts + tg = 0). Denote the sender’s ex-ante transfer tg by
7 and the sender’s interim transfer rule tg by t (correspondingly, Tk = —7 and tg = —t).

A single-period punishment strategy profile is characterized by: normal as well as penal
ex-ante transfers, 7, as well as 75 and 7; normal as well as penal message rules, M, as
well as pt . and p ; normal as well as penal decision rules, p  as well as p, and p ..

Play proceeds as follows. The ex-ante transfer is 7; if player i € {0,S,R} deviated
last in the previous period, where i = 0 denotes that no player deviated. The message
rule, interim transfer rule, decision rule, and punishment message are E],, t; Qj’ and m]r-]
if player j € {0,S, R} deviated from the ex-ante transfer in this period, where t; and m}o
are defined by (4) and (5) given E]_ and ,(_)],. The punishment decision is df = ,(_)]. (mf) if the
sender deviated to some (7, t) ¢ (Ej’ t;)([0,1]) in this period.

Proposition 3. There exists an optimal equilibrium in single-period punishment strategies where
Lopy =t Py =Px and 0 = Eu, (p(0))];
2. pp=10,1], p, = pr, and vg = ug(pr([0,1]),[0,1]);

3. My and Py solve

0 E)us

A W(p(u(é»,é)dé] }

subject to p(u(0)) is nondecreasing in 6,

Ug = min {us(p(m”),ﬂp) +E
P07

= p—(m), ifm > m?, ?
p(m) § € {p-(m),p+(m)}, ifm=m?,
= p4(m), ifm < mP,

where mP = u(67) and [p—(m),p+(m)] = {d : w(d,m) < L(v)} forall m € u([0,1]).

Proposition 3 specifies optimal punishments for the receiver and the sender: a deviator
is punished as harshly as possible for a single period, and then optimal play resumes. The
deviator’s worst equilibrium payoff equals his or her payoff in the punishment period.
Following a deviation from 7 by the receiver, the message rule is completely uninforma-
tive and no transfers are made. Following a deviation from 7 by the sender, the receiver
makes either the highest or lowest incentive compatible decision, and the message and

interim transfer rules are chosen to minimize the sender’s expected payoff.
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4 Monotone Persuasion

The monotone persuasion problem (8) is of independent interest to the persuasion liter-
ature set in motion by Kamenica and Gentzkow (2011). For generality, we treat u. as a
primitive rather than being given by (7). Assume that u,(m) depends on a message m
only through the induced posterior mean state E[0|m]:

Assumption 2. u,(m) = u.(E[0|m]) forall m C [0,1].

Therefore, without loss of generality, we identify each message m with the induced
posterior mean state, m = [E[0|m]. This simplifies the previous convention that identified
each message with the set of states that induce it.

To solve the monotone persuasion problem (8), it is convenient to define the pooling
set P C [0,1] of a monotone message rule u as the set of states that are not separated by
p. Since the prior distribution F(6) has a density, without loss of generality, each message
m € u([0,1]) of a monotone message rule y is either a singleton or an open interval.
Thus, each open pooling set uniquely determines a corresponding monotone message
rule. This pooling set is a union of some set of disjoint open intervals, P = |J;(¢;, ;).'®
The distribution F of states induces a distribution Gp of posterior mean states given by

F(9), if6 & (&;, ;) foralli,
Gp(0) = { F(&i), if6 € (&, E[0](S:, Ci)]) for some i, (10)
F(Ci), if 6 € []E[9|(€l, gi)]/ gz) for some i,

and the expected payoff may be written as E [u.(u(0))] = fol u«(0)dGp(0). Solving the
monotone persuasion problem (8) is thus equivalent to finding the optimal pooling set P,
that maximizes fol u(0)dGp(0). Define the integral of Gp as

0
Ip(0) = /0 Gp(8)d6 for all 6 < [0,1]. (1)

Notice that each such function I'p uniquely determines a corresponding open set P.
Assume that u,(6) is continuously differentiable in 6 for all 8 € [0,1] and is twice

continuously differentiable in 6 for almost all 6 € [0, 1].

18We define open sets in [0, 1] rather than in IR; so [0,1/2) U (1/2,1] is also an open subset of [0, 1].
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Figure 2: P, when u//(0) changes sign once

Lemma 2. The optimal pooling set is

1
1
P, € argmlg;lx/O u, (0)I'p(0)do 12)

subject to P is an open subset of [0, 1].

As (12) suggests, the optimal pooling set P, should be chosen to make I'p(8) large
(small) at states 6 where 1/ (6) is positive (negative). Separating (pooling) state 6 increases
(decreases) I'p(8), so full separation is optimal (P, = @) if and only if u, () is convex in 0
(see Lemmas 4 and 5 in Appendix C).

We next characterize P, when u//(6) changes sign once (see Figure 2).

Proposition 4. Suppose there exists & € (0,1) such that

<0, if6elo,0h),
ai(eyq < OO 1)
>0, ifoe (%1].
If there exists 0L € (6,1) such that
o (m) + ul (m3) (0 — my) = u.(67), (14)

where mL = E[0][0,6L)],

then P, = [0,0%) and mt € (0,0y). Else, P, = [0,1] and mL = E[6] € (0,6y).

If (13) holds, the optimal pooling set is an interval [0,6%). Figures 2a and 2b respec-
tively illustrate when incomplete pooling (fL < 1) and complete pooling (0% = 1) are
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optimal. Complete pooling is optimal whenever the prior distribution F puts sufficient
weight on low states.

Further, if (13) holds, then the optimal unrestricted message rule that solves the unre-
stricted persuasion problem is monotone, as shown by Kolotilin (2018). Thus, Proposition
4 also characterizes the optimal unrestricted message rule.

We next characterize P, when 1/ (0) changes sign twice (see Figure 3).
Proposition 5. Suppose that for some 6%, 0" € (0,1) such that 0% < 64,
<0, if6elo6h),

u”(0) ¢ >0, ifo e (6, 6M), (15)
<0, ifoe (pH,1].

1. If there exist 0L,0H € (0L,0M) such that 6L < 0 and

i () + ul (m) (65 — my) = u.(65), (16)
e (mh) + ul, () (0 — ml) = u. (07), (17)

where mb = E[6][0,0%)] and mE = E[0](6H,1]],
then P, = [0,0L) U (6H,1]. Also, mL € (0,0r) and mE € (6y,1).
2. Else if there exists M € (0,1) such that
() + ul (m) (03 —m) = w(m!) +ul (m) (03 —m.T), (18)

i (m)F(0) + . (m!) (1 — F(0)) > u.(E[6]), (19)
where mL = E[0][0,0M)] and m!! = E[9|(6M,1]),

then P, = [0,6M) U (6M,1] for some OM that satisfies (18) and (19). Also, mL € (0,6r)
and mE € (6, 1).

3. Else, P, = [0,1].

If (15) holds, the optimal pooling set takes one of three forms: (i) pooling of low states,
separation of intermediate states, and pooling of high states (Figure 3a); (ii) pooling of
low states and pooling of high states (Figures 3b and 3c); and (iii) pooling of all states
(Figure 3d). Moving along Figures 3a — 3b — 3c — 3d, the prior distribution F puts

increasingly more weight on low and high states (and less weight on intermediate states).
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Figure 3: P, when u//(0) changes sign twice

Further, if (15) holds, then there exists a prior distribution F such that the optimal
unrestricted message rule is nonmonotone, as shown by Dworczak and Martini (2018).
Thus, in this case, the existing approaches to the unrestricted persuasion problem do not
address the monotone persuasion problem, but Proposition 5 does.

We now compare the optimal monotone and unrestricted message rules, character-
ized respectively by Proposition 5 above and Proposition 3 of Kolotilin (2018). If (16) and
(17) hold (Figure 3a), then the optimal unrestricted message rule is monotone and is rep-
resented by P, = [0,0L) U (01, 1]. If u.(mL) </ (m!!) and (18) and (19) hold (Figure 3b),
then the optimal unrestricted message rule is likewise monotone and is represented by
P, = [0,6M) U (6M,1]. Otherwise (Figures 3c and 3d), the optimal unrestricted message
rule is nonmonotone and yields the expected payoff co u. (IE[f]) where co u is the concav-
ification of u.;'” but the optimal monotone message rule yields a strictly lower expected
payoff than co u, (IE[6]) and is represented by either P, = [0,0M) U (6M,1] or P. = [0,1].

9The concavification of u, is defined as cou(0) = min, ¢y, u(8), for 8 € [0,1], where U is the set of all
concave functions u on [0, 1] such that u(6) > u.(6) forall 6 € [0,1].
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5 Quadratic Payoffs

Assume that the players’ payoffs are quadratic:

Assumption 3. ug(d,0) = Ar(0d —d?/2) and us(d,0) = As((ad+b)d —d?/2) foralld € R
and 6 € [0,1], wherea > 0,b € R, Ag > 0, Ag > 0,and Ag + As = 1.

Assumption 3 satisfies Assumption 1, so Propositions 1, 2, and 3 hold. It also satisfies
Assumption 2, so Propositions 4 and 5 hold with u,(m) = u(p«(m),m) for all m € [0, 1].
Under Assumption 3, the receiver’s preferred decision is pr(f) = 6, and the sender’s
preferred decision is pg(0) = afl + b. Moreover, given the normalization Ag + Agr = 1,
the first-best decision is prp(6) = Agrpr(0) + Asps(6) = ab + B and the joint payoff is
u(d,0) = prp(0)d — d*>/2, where & = Ag + Agaand B = Agh.?’

5.1 Preliminaries

Under Assumption 3, the second-best decision (6) given message m pushes d as close to
prp(m) as possible, while still keeping d within distance ¢ from the receiver’s preferred

decision pg(m):

p«(m) = arg max u(d, m)

b v— Og —UR ( O)
. B <)
subject to |d — pr(m)| < £ = 13 1 ,

where we call / the relational leeway. The second-best decision rule p is parallel to pr at
extreme states and coincides with prp at non-extreme states. Formally, a state is extreme if
the first-best decision is not enforceable at this state. The set of extreme states is thus

X ={0: |orp(0) — pr(0)| > £}. (21)

If nonempty, the set X consists of one or two intervals (see Figures 4 and 5).

An immediate implication of Proposition 2 is that pooling can be optimal only if there
exist extreme states (X # @). Moreover, if pooling is optimal, then each non-singleton
message m must contain such extreme states; otherwise it would be optimal to separate
all states 6 € m and implement the first-best decision prp(6) for each 6 € m.

2These payoff functions nest two special cases. First, in Crawford and Sobel (1982)’s example, the
sender has constant upward bias, so that ps(f) = 6 + b. Second, in Kamenica and Gentzkow (2011)’s
lobbying example, the sender is biased towards a specific decision d. > 1, so that pg(0) = af + (1 —a)d,
witha € (0,1).
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Further, Assumption 3 imposes a tight link between the set of extreme states and the
curvature of the joint payoff. It is easy to show that u, is convex on the set of non-extreme
states. Further, define the receiver to be over-responsive if pi(6) > 2055(0); equivalently,
a < 1/2. Then u, is concave on the set of extreme states if and only if the receiver is
over-responsive.

The rest of Section 5 will exploit this link between X and u// (0) by using results from
Section 4 to characterize the optimal pooling set. We set the stage by restating the fact that
full separation is optimal if and only if the joint payoff u, is convex on [0, 1].

Corollary 2. The optimal pooling set P, is nonempty if and only if the set of extreme states X is
nonempty and the receiver is over-responsive.

To understand the benefits of pooling, consider the choice between the following two
message rules which differ only on an interval (¢, ) of extreme states. One message
rule y1, completely pools this interval into one message E[(¢, ()], and the other y; fully

separates this interval. Both message rules induce the same expected decision on (¢, ),

Eo:(1p(0))1(Z,0)] = Elo«(ps(0))1(¢, £)] = p+(E[B](E, O)])-

But, decisions are less responsive to the state on (g, ) under y, than under p:

0 = pl(pp(0)) < pi(ps(0)) = pr(0) = 1.

So, prp is closer to p.(yp) than to p.(us) if a is closer to 0 than to 1. That is, pooling
is optimal if and only if, at extreme states, the receiver is over-responsive (x < 1/2), in
which case all extreme states are optimally pooled: the closure of P, contains X.

5.2 Constant-Sign Bias

Suppose the receiver is over-responsive and the sender is upwardly biased, ps(0) > pr(0)
for all § € [0,1].?! In this case, X consists of up to one interval that shrinks and eventually
vanishes as the players become more patient.”? Specifically, there exist 64,55 € (0,1)
such that 64 > 6% and

@, if 5 € (64,1),
X = 4 1[0,6%) for some 8- € (0,1), ifé € (68,54),
0,1], if § € [0,55).

2I'The case of a downwardly biased sender is symmetric and omitted.
22This is because the relational leeway ¢ increases with J, as shown in Lemma 7 in Appendix D.
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Figure 4: Over-responsive receiver, constant-sign bias

Proposition 6. Suppose the receiver is over-responsive, and the sender is upwardly biased. There
exists 68 € (68,6 such that the optimal pooling set is

@, if5 € (64,1),
P, = 4 [0,6L) for some 6L € (0L,1), if5 € (6B,54),
[0,1], if 5 €10,68).

Further, d0L/dé < 0if 5 € (68,64).

Proposition 6 highlights what we call over-pooling: all extreme states are optimally
pooled with some adjacent non-extreme states (see Figure 4). The proof relies on Propo-
sition 4. To build intuition, consider the effects of marginally expanding the pooling in-
terval from [0,6%) to 0,0 + df), and thus increasing the pooling message from ml =
E[0][0,0%)] to m" +dm = E[6][0, 0% + d6)]. The cost of this expansion is that mass f(6")d6
of newly-added states [0%, 0 + d6) switch from the first-best decision prp(6") to a lower
decision p(m"), resulting in a loss of (u.(0) — u.(mb)) £(6%)d6. The benefit of this ex-
pansion is that mass F(6%) of existing states [0, 0) switch from decision p.(m") to a higher
decision p. (m" + dm), resulting in a gain of u/,(m")dm F(8"). The net benefit of this ex-

pansion is thus®®
(wl(mh) (08 —m") — (1, (65) — . (m")) ) £(6")de. (22)

If the receiver is over-responsive, then u, is concave on [0, BL) ; see Figure 2. In this case,

23Here, we use the fact that dn/d6 = (& — mL) f(6L)/F(6") to rewrite the benefit term of (22).
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(22) indicates that the benefit of the marginal expansion outweighs the cost, leading to
over-pooling: the optimal threshold 6L is greater than 6L. Further, as the players become
more patient, the set of extreme states shrinks, and the optimal pooling interval shrinks
with it.2*

5.3 Changing-Sign Bias

Now, suppose the receiver is over-responsive, and the players” preferred decision rules
intersect at some state 6y € [1/2,1), so that the sender’s bias changes sign at 6. In this
case, X consists of up to two intervals that shrink and eventually vanish as the players
become more patient. Then there exist 64,55 € (0,1) such that §4 > 6® (with equality if
and only if ) = 1/2) and

@, if 5 € (64,1),
X = 4 [0,6%) for some 0 € (0,1), if 6 € (68,6%),
[0,6%) U (65,1] for some 6L,6H € (0,1) such that 8% < 67, if § € (0,5P).
Proposition 7. Suppose the receiver is over-responsive and pr(6y) = ps(6y) for some 6y €

[1/2,1). There exist 68,5C,6P € (0,1) with either 6% < 6P = 6¢ = 6B < 54 or 60 < 6¢ <
8B = 6B such that the optimal pooling set is

(

@, ifs € (64,1),

[0, 6%) for some 6% € (0%,1), if 5 € (68,64,

P. = < [0,0%) U (01,1] for some 0L, 0H € (6, 0M) such that 6L < 6H, if 5 € (65, 68),
[0,6M) U (6M,1] for some 6M € (0,1), if s € (6P,59),

L [0,1], if 6 € [0,6D).

Further, d0L /dé < 0if 6 € (6$,64), and dot1 /ds > 0if 5 € (65, 58).

The proof of Proposition 7 relies on Proposition 5. Consider how the optimal pooling
set P, changes as we decrease J from 6% to 0. For 6 € (6%,64), the set X consists of one
interval [0,8) and, as in Proposition 6, over-pooling occurs: P, = [0, 0%) with 6L > 9L, As
5 decreases towards %, the optimal pooling threshold 6% increases. If complete pooling
becomes optimal (6L reaches 1) at 6% > 68, then complete pooling remains optimal for all
5 €0,8B).

24Relatedly, as Corollary 3 in Appendix D shows, the optimal pooling interval shrinks as the receiver
becomes less responsive to the state (that is, as p}; (0) — ppp(6) = 1 — a decreases).
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Figure 5: Over-responsive receiver, changing-sign bias

Suppose now that optimal pooling remains incomplete (% < 1) when & reaches 65.
For 6 < 6p, the set X consists of two disjoint intervals [0,6) and (6,1]. Over-pooling
takes the following form. For 6 € (6$,68), each interval of X is separately over-pooled:
P, = [0,6%) U (6H,1], with & < 6L < 6 < M. As § decreases towards 6, the optimal
pooling thresholds 6% and 0 move closer together, and the interval [0L, 1] of fully sep-
arated states shrinks. Até = 6, the optimal thresholds 8L and 6! meet at some 6, so
that (almost) all states belong to one of the two pooling intervals [0,0M) and (6M,1]. The
optimal pooling set retains the form P, = [0,0M) U (8M,1] over the range § € (62, 65).

As 6 decreases below 6P, the optimal pooling set changes discontinuously to complete
pooling, P, = [0,1]. Complete pooling remains optimal for all § € [0,6P). To build
intuition, suppose that 8y = 1/2 and 6 is uniformly distributed on [0, 1] (see Figure 5).
Within the range & € [0, 6$), the optimal pooling set P is either [0,1] or [0,6%,) U (6%, 1],
where 03, = 1/2 in this symmetric setting. If 5 = 0, then u, is concave on [0,1]; so
complete pooling is uniquely optimal, and, by continuity, it remains uniquely optimal for
some range ¢ € [0,6D).
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5.4 Uniform Distribution

Assume further that the state is uniformly distributed:

Assumption 4. F(0) = 6 forall 6 € [0,1].

Under this assumption, Propositions 6 and 7 can be restated in a closed form.>

Proposition 8. Suppose & < 1/2, a/2+ B > 1/2, and a« ++/1 —2a/4+ B < 1. Then the
optimal pooling set is

(

@, if € € (¢4, 00),
[0, 6%) where 6L = v (B — 1), if0 € (48, 04),
Py = < [0,065) U (61,1]) where 0L = y(B—£) and 0 =1 — (1 — ¢ —a — B), if£ € (45, 058),
0,6M) U (6M,1] where 92 = s i=0P s, if e e (62,65,
01, ifre o),

2(2+ vI—2a — 2a)
3 — 6o + 4a? !

(¢4, 0B, (€, (D) — (51_“_/3 —\/41—20c+,3\/1—20c—1/4 1 — 2 )

where y =

21—wa) 7 16(1 —max{3/4,a + B})

Assumption 4 also enables a closed-form characterization of the sender’s worst equi-
librium, as in Proposition 3.

Proposition 9. Suppose a/2 4+ b > 1/2. There exists an optimal equilibrium in single-period
punishment strategies where the sender’s penal decision rule is p(m) = m — £ for all m and the
sender’s penal message rule p is represented by the pooling set P = |0, L), with

N L ifa(b+10) > 3, 23

Proposition 9 highlights two points. First, an upwardly-biased (on average) sender
is punished with the lowest incentive compatible decision rule. Second, punishing the
sender may or may not involve pooling. Pooling hurts the sender by making the decision
adapt less to the state, but benefits the sender by reducing his signaling transfers. An
increase in a(b + ¢) makes signaling transfers relatively more effective as a punishment,

and thus shrinks the optimal penal pooling set [0,6L).

BProposition 8 covers the case 6P < 6¢ < 68 = 6B of Proposition 7. Proposition 6 and the remaining
case of Proposition 7 are covered in Appendix D.
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6 Separation of Information and Control

In this section, we show how ‘arms-length” organizational forms that separate informa-
tion and control enable effective informal communication and decision-making. We con-
sider two changes to the model that reduce the separation of information and control.
In Section 6.1, we introduce formal communication processes that mechanically increase
transparency. Specifically, we introduce a public signal about the state. In Section 6.2, we
allow for delegation of decision rights to informed players.

It turns out that improving public information or delegating decision rights to in-
formed players does not enable better informed decision-making. The availability of
transfers as a signaling device implies that better informed decision-making can always
be achieved without tightening incentive constraints, so an organizational form that brings
information and control together adds no informational benefits for the relationship. On
the flip side, such an organizational form tightens incentive constraints in two ways. First,
it improves both players” worst possible equilibrium payoffs, and thus limits the sever-
ity of off-path punishments. Second, it prevents information pooling, and thus limits the

ability to discipline decision-making in states of extreme conflict.

6.1 Transparency

We augment our model so that at the start of each period, the receiver observes a real-
ization of a state-dependent signal. We maintain Assumption 1 of Section 2, but do not
impose Assumptions 2 or 3. Just as with message rules, we assume that the signal rule
(0) is deterministic and (without loss) identify each signal realization s with the set of
states thatinduceit,s = {6 : ¢(6) = s}. We also assume that the signal rule ¢ is monotone
in the sense that each s € ¢([0, 1]) is a convex set.

Since the signal and message rules are deterministic, we can restrict attention to mes-
sage rules that are refinements of the signal rule in that for each realization s of ¢ there
exists a realization m of u such that m C s. In particular, this restriction allows us to
consider decision rules p that depend on the message m but not the signal realization s,
because m incorporates all information contained in s.

The set of equilibrium payoffs V under signal ¢ can be computed by applying Propo-
sition 3 separately to each realization of signal ¢. In particular, the optimal and penal
message and decision rules are defined for each signal realization s € ([0, 1]) as follows:
ps is given by (6) and y. solves (8) given that the set of states is s rather than [0, 1]; p R~ PR
and B = Y; and P and P solve (9) given that the set of states is s.

We say that y is more informative than ¢ if ¢ is a refinement of §. For monotone signal
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rules, this notion coincides with the informativeness criterion of Blackwell (1953). Signal
rule ¢ is strictly more informative than 1 if i is more informative than ¢ and the set of
states where 1(0) # §(6) has strictly positive probability.

Proposition 10. Suppose that ¢ is strictly more informative than ( and let V and V be the
corresponding equilibrium payoff sets. If p (u(6)) is nondecreasing in 6 under , then V. V.

By Proposition 3, p, (1 5 (0)) is nondecreasing in 6 on each signal realization s but may
decrease across signal realizations; thus, the assumption in Proposition 10 that p (. (6))
is nondecreasing in 6 is not innocuous. This assumption holds if Assumptions 3 and 4
hold and ps(6) does not cross pg () from below for 6 € [0,1].2° Moreover, this assumption
holdsifé = 0or(0) = O forall @ € [0,1]. In contrast, Proposition 3 implies that p. ((80))
and p_ (p,(6)) are always nondecreasing in 6.

To build intuition for Proposition 10, we start with the myopic benchmark. We will ar-
gue that the set of equilibrium payoffs V expands when moving from a fully informative
public signal (y¢(0) = 6) to a completely uninformative public signal (¢, (68) = [0,1]).
Specifically, vg and vy strictly decrease and v weakly increases.

The receiver’s worst equilibrium payoff v is lower under ¢, than 1. In the receiver’s
worst equilibrium, the receiver always chooses her preferred decision pr(y(0)) given
the public signal ¢ and always receives zero transfers. Public information improves the
receiver’s decision-making and thus her worst equilibrium payoff.

The sender’s worst equilibrium payoff vg is lower under ¢, than ;. The basic idea is
that any equilibrium decision outcome implemented under ¢ ¢ (and thus a fully informed
receiver) can also be implemented under ¥, by inducing the sender to fully reveal the
state to the receiver. The sender’s payoff vg is strictly smaller under ¢, because inducing
full separation requires the sender to make positive interim transfers to the receiver.

The best joint payoff v is weakly higher under ¢, than ¢, again because any equilib-
rium under ¢ can be implemented under ¥,. In fact, the best joint payoff may be strictly
higher under ¢, than ¥;. Under ¢, the joint payoff is maximized under complete pool-
ing of the states if the receiver is over-responsive (see Section 5.1). Such pooling, however,
is precluded under ¢ ¢ (and thus a fully informed receiver).

In the non-myopic case, these effects are preserved, and are further amplified by the
shadow of the future. Moving from ¢ to ¢, expands V and thus increases the relational

26This statement follows from Proposition 9. Conversely, if Assumptions 3 and 4 hold, ¢ > 0, and ps(6)
crosses pr(0) from below at 6y € (0,1), then ps(us(6)) is not nondecreasing in 6 on [0, 1] for some . For
example, ps(ps(0)) jumps down from 6y + £ to 6y — £ at 6 if ¢ contains signal realizations (6p — ¢,6p) and
(6o, 6o + ¢) for sufficiently small ¢.
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leeway ¢ (which increases with ¥ and decreases with with v5 and vy). This in turn relaxes

constraints on decision-making and expands the set V even further.

The result that public information hurts the relationship relates to various papers that
study the social value of public information. Hirshleifer (1971) argues that welfare may
be decreasing in the amount of public information available to agents. Bergemann and
Morris (2016) clarifies this point: making more information available to an agent may,
by increasing the set of incentive constraints she faces, shrink the set of equilibrium out-
comes.”’” This relates to the logic of our model, where the availability of public infor-
mation makes it impossible to pool incentive constraints across states, and thus worsens
incentive provision within the relationship. Public information in our model also im-
proves the worst possible equilibrium payoffs for both players; this decreases the surplus

and thus worsens intertemporal incentives.?®

6.2 Allocation of Authority

In our model of Section 2, decision-making authority always resides with the receiver
and is not transferable (receiver-authority). Consider a variation of the model where the
sender chooses the decision instead of the receiver; call this variation sender-authority. For
simplicity, assume that the payoffs are quadratic and Assumption 3 holds. Focus on the
case Ag = Ag, so that the sender has the same temptation to defect from the first-best
decision under sender-authority as the receiver has under receiver-authority. In this case,
tull separation is always optimal under receiver-authority.

It turns out that allocating decision authority to the sender strictly decreases the best
joint payoff. This is because the worst equilibrium joint payoff is strictly higher,”” and
thus the relational leeway is strictly smaller, under sender-authority. This implies that
all our results continue to hold even if decision-making authority could be allocated to

either player at the beginning of the game, because the players would always choose

ZCrémer (1995), Kolotilin (2015), and Fong and Li (2016) discuss other settings where public information
may be detrimental.

2This point relates to an insight from Baker, Gibbons and Murphy (1994). There, objective performance
measures, rather than transparency, improve the players’ outside options and make cooperation within the
relationship more difficult to sustain.

P Denote A\g = Ag = A. Under sender-authority, vg = AE[(af + b)?]/2 because the sender can always
choose his preferred decision in each state, whereas vy = AE[0? — (af + b+ £ — 6)?] /2 because af + b + ¢
is the worst possible decision for the receiver that is enforceable for the (upwardly biased) sender. On the
other hand, under receiver-authority, vy = AE[0? — (E[0] — 6)?]/2 < AE[0?]/2 because the receiver can
always choose the uninformed decision d = E[6], whereas vg < AE[(af + b)? — (6 — £ — (af + b))?]/2
because full separation, non-negative interim transfers by the sender, and decision § — ¢ can be achieved in
equilibrium. Thus, the worst equilibrium joint payoff is strictly higher under sender-authority.
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receiver-authority over sender-authority.

When Ag # AR, two additional effects make the comparison between sender- and
receiver-authority more nuanced. The first effect favours giving authority to the player
who cares more about the decision. Under i-authority where i € {S, R}, the temptation to
defect from the first-best decision is A; (0;(8) — prp(8))* /2 = Air% (pi(0) — 0_i(6))%/2,
which is higher than the corresponding temptation under (—i)-authority when A; < A_;.
The second effect weakly favours receiver-authority. Under receiver-authority, when
As > Ag, the optimal equilibrium may involve pooling to discipline decision-making;

this tool is unavailable under sender-authority.

Consider another variation where decision-making authority is allocated at the be-
ginning of each period (short-term-authority). Specifically, following Baker, Gibbons and
Murphy (2011), suppose that at the beginning of each period, the receiver has decision-
making authority by default, and can make a take-it-or-leave-it offer to transfer authority
to the sender for that period in exchange for a transfer. As above, focus on the case
As = Ar. We know from above that the best (worst) equilibrium joint payoff is higher
(lower) under receiver-authority than under sender-authority. This implies that relative
to receiver-authority, short-term-authority does not improve on the best equilibrium joint
payoff (because the players cannot do better than to allocate authority to the receiver in
each period), but increases the worst equilibrium joint payoff (because the players always
have the option to allocate authority to the sender in each period). This then implies that
the relational leeway, and thus the best equilibrium joint payoff, is strictly lower under
short-term-authority than under receiver-authority.

The standard rationale for delegation is that the better-informed player can more effec-
tively adapt the decision. For example, Dessein (2002), Alonso, Dessein and Matouschek
(2008), and Rantakari (2008) explore the tradeoff between allocating authority to an un-
informed receiver versus an informed but biased sender.>’ The standard rationale for
delegation no longer applies in our setting because interim transfers can credibly achieve

arbitrary communication outcomes at no welfare cost.

30Relatedly, Holmstrom (1984), Melumad and Shibano (1991), Martimort and Semenov (2006), Alonso
and Matouschek (2008), Goltsman et al. (2009), Kova¢ and Mylovanov (2009), and Amador and Bagwell
(2013) study the optimal delegation problem. Krahmer (2006) and Lim (2012) allow authority to be allocated
after the sender observes the state.
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7 Discussion of Model Assumptions

We discuss some of our modelling assumptions and highlight the extent to which our

results depend on these assumptions.

7.1 Exogenous Outside Options

We follow Abreu (1988) and Abreu, Pearce and Stacchetti (1990) in characterizing the en-
tire set of equilibrium payoffs. In particular, optimal equilibria utilize the worst possible
equilibria as off-path punishments. One alternative modeling approach taken by Levin
(2003) is to specify exogenous outside option payoffs ug and uy for both players; so that
players are punished for deviations by receiving their outside option payoffs thereafter.
In this approach, at the beginning of each period, the receiver makes an offer to the sender
consisting of a contractible commitment to an ex-ante transfer. If the sender rejects this
offer, the players receive their outside option payoffs, and time moves on to the next pe-
riod. Another alternative modeling approach taken by Baker, Gibbons and Murphy (1994,
2002) is to restrict attention to trigger strategy equilibria where off-path punishments cor-
respond to some static equilibria of the stage game. Our results continue to hold in these
settings, with the worst equilibrium payoffs equal to either the outside option payoffs or
the static equilibrium payoffs.

7.2 Imperfect Monitoring

We have assumed perfect monitoring in that all actions of the sender and the receiver
are immediately publicly observed. Consider a variation in which the receiver’s decision
is imperfectly monitored. Specifically, suppose that the receiver’s (private) decision d
stochastically determines an output y = d + € which is publicly observed and replaces 4
as an argument in the players’ payoff functions: ug(y,0) = Ag(0y — y*/2) and us(y,0) =
As((a8 + b)y — y?/2). Assume that Ele] = 0 and that the density g of ¢ satisfies the
appropriate Mirrlees-Rogerson conditions (Rogerson, 1985), ensuring that the receiver’s
decision choice can be represented by a first-order condition.

Focusing on the case where the sender is upwardly biased, consider the highest de-
cision p(m) that can be supported in equilibrium. Parallel to Theorem 6 of Levin (2003),
p(m) can be implemented by the strongest ‘one-step” incentive scheme that satisfies the

self-enforcement constraint: this scheme may take the form of stationary continuation
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payoffs vs(0) = vg, vr(0) = U — vg and the ex-post transfer rule

0 ify >p(m) + e,
Tr(y) = -Ts(y) = , _ e
1750 —vs —ovg) ify <p(m)+es

where ¢, is the point where ¢’(¢) switches from negative to positive. The receiver’s (un-
observed) decision then satisfies the first-order condition

d
Z B [Ag(m(d+e) — (d+¢)2/2) — Tr(d | —0,
53 E [Ar(m(d+e) = (d+e)2/2) = Ta(d+0))]| =0
which simplifies to p(m) = m + ¢ for some ¢ > 0. In other words, the self-enforcement
constraint effectively specifies that the equilibrium decision cannot exceed the receiver’s
preferred decision by more than the leeway /. (As before, the sender’s incentive problem
does not contribute to the self-enforcement constraint.) Consequently, retracing the steps

of our analysis, our results continue to hold in this variation.

7.3 Correlated States

We have assumed that the state 6; is i.i.d. across periods. Consider a variation where 6; is
correlated across periods. Specifically, introduce a finite-valued random variable w; that
is publicly observed at the beginning of each period ¢ (before ex-ante transfers are made),
where w; is a Markov chain. The realization of w; fully determines the (time-independent)
distribution F(6;|w;) of the state 6;. Crucially, given wy, 6; contains no further information
about w1 (and thus about ;1 1); so the sender and the receiver are always symmetrically
informed about the future distribution of states. Note that this property would no longer
hold if we did not introduce w;, but simply assumed that 6; was a Markov chain.

With this modification, without loss of generality, we can restrict attention to equilibria
that are stationary conditional on w;. Consequently, our results continue to hold, except
that the key objects such as V, ¢, and 6. are now functions of wy.
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8 Conclusion

In our model, incomplete information transmission does not reflect communication fail-
ure, but instead is an instrument for managing decision-making. This finding relies on
the capacity of voluntary transfers to credibly support any monotone message rule at no
welfare cost. It suggests that when modeling strategic communication in applied settings,
it is crucial to understand whether monetary or non-monetary transfers (such as wages
or favours) are available, because our implications differ significantly from those of the
standard literature on strategic communication without transfers. In fact, one interpreta-
tion of our model is that voluntary transfers endogenously endow the privately-informed
sender with the ability to commit to any monotone message rule, even with impatient
players. Such commitment is the premise of the literature on Bayesian persuasion (Ka-
menica and Gentzkow 2011). So, our analysis extends the applicability of the Bayesian
persuasion framework to settings without commitment but with transfers.

Our model is remarkably tractable and thus allows for a thorough treatment of re-
peated interactions. This analysis produces a rich and intuitive set of results. In par-
ticular, incomplete information transmission is implemented only for states of extreme
conflict, and only if the receiver’s decision-making is too responsive to information. One
implication is that with constant bias, pooling does not occur. In contrast, in the standard
constant-bias cheap-talk game (Crawford and Sobel 1982), information transmission is
always incomplete, and this is generally exacerbated in high (low) states if the sender is
upwardly (downwardly) biased.

In our model, an ‘arms-length” approach with separation of information and control
benefits the relationship. This provides a rationale for opaque organizations which put
information in the hands of superiors and prevent subordinates from acquiring informa-
tion elsewhere. A related implication is that mediators who control the flow of informa-
tion from the sender to the receiver cannot improve the relationship. This is because it is
optimal to give the sender as much control over the release of information as possible.

We hope that future work will use our tractable framework to study other challeng-
ing problems in strategic communication. For example, one might examine the case
with multiple senders and receivers, possibly connected by a communication network.
Another promising avenue would be to allow for costly information acquisition by the

sender and the receiver.

28



Appendix A Stationarity

This appendix specifies necessary and sufficient conditions for equilibrium, and proves
Lemma 1.

To show that the set of equilibrium payoffs is compact, restrict decisions and transfers
to compact sets d € [—d,d] and 7, t;, T; € [—1,1] fori € {S,R}. Under this restriction
and under Assumption 1, it can be shown that the set of equilibrium payoffs is compact
(see, for example, Mailath and Samuelson 2006). Now, observe that this restriction is
without loss of generality if the bounds d and f are chosen to be large enough that (in any
equilibrium) decisions and transfers are interior. Indeed, under Assumption 1, we can
show that such bounds exist.

We now show that the set of equilibrium payoffs is the simplex V defined by (1).
Consider an optimal equilibrium payoff vector (v%, v}) with v§ + v = T, and let o, be
an equilibrium supporting (v, v%). Let (vs,vg) be any point in the simplex V. Notice
that we can modify o, to produce (vs,vg) by changing only the ex-ante transfers in the
first period from 7 to T; = T + (v} —v;)/(1 — ) for each i € {S,R}. The modified
ex-ante transfers remain feasible, 7s + Tr > 0, because vs + vg < v$ + vy by definition
of V. Further, this modification affects the players” incentives only at the ex-ante round
of the first period. Each player is willing to make the ex-ante transfer 7; because vg > vg
and vgr > vy by definition of V. Thus, the modified strategy profile is an equilibrium.
Conversely, it is easy to see that any (vg, vgr) ¢ V cannot be supported in equilibrium. We
conclude that V' is the set of equilibrium payoffs.

A message rule y(0), a decision rule p(m), transfer rules 1, t;(m), T;(m), continuation
payoff function v;(m), for each i € {S,R}, and punishment decision d? and message
mP constitute an equilibrium if and only if the following seven conditions hold (see, for
example, Mailath and Samuelson 2006):

C1. Each player i is willing to make ex-ante transfer 7;:

vs = (1=06)[—15+ Efus(p(u(0)),0) — ts(u(6)) — Ts(1(6))]] + SE[vs(u(6))] = vs;
vr = (1=6)[—tr + Elur(p(1(6)),0) — tr( (6)) — Tr(4(6))]] + SE[vr (1(0))] = vg.

C2. For each state 6, the sender is willing to send message y(0) and to make interim
transfer t5(u(0)).

(a) There is no profitable deviation to another message — interim-transfer pair
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0),ts(14(9))) that is observed on the equilibrium path:
K K q p

(1= 0)[us(p(n(6)),0) — ts(1(0)) — Ts(u(6))] + 6vs (1 (6))
> (1-08)[us(p(u(9)),0) — ts(1(8)) — Ts(u(9))] + dvs(p(6)) for all 6,6 € [0,1].

(It is without loss of generality to let ts depend on y(6) but not directly on 6;
since the sender makes his interim transfer choice before the receiver, we can
always modify u(0) to incorporate any additional information contained in fg

without changing the receiver’s information set.)

(b) There is no profitable deviation to some pair (77, f5) that is never observed on

the equilibrium path:

(1—0)[us(p(n(0)),0) — ts(u(6)) — Ts(u(6))] + 6vs(u(0))
> (1—90)us(d?,0) + dvg for all 6 € [0,1].

Here, we specify that following any such deviation, the receiver chooses pun-
ishment decision 47.
C3. The receiver is willing to make interim transfer tg(m):

(1 =06)[ur(p(m), m) — tr(m) — Tr(m)] + 6vr(m)
> (1=0)ur(pr(m),m)+ dog forall m € u([0,1]).

C4. The receiver is willing to choose decision p(m) on-path and d? off-path.

(a) After an on-path message — interim-transfer pair, the receiver is willing to

choose decision p(m):

(1—=06)[ur(p(m),m) — Tr(m)] + bvr(m)
> (1—908)ug(pr(m),m)+ évg for all m € u([0,1]).

(b) After an off-path message — interim-transfer pair, the receiver is willing to

choose decision d”:
(1= 0)ug(d?,m?) + 5(3—vs) > (1—8)up(pr(m’),m?)+bvg.

Here, we specify that following any deviation by the sender, the receiver be-
lieves that the state is in m” C [0, 1].
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C5. Each player i is willing to make ex-post transfer T;(m):

—(1—=96)Ts(m) 4 dvs(m) > dvg for all m € u([0,1]);
—(1=6)Tr(m) + dvg(m) > dvg forall m € u([0,1]).

Cé6. The continuation payoffs can be supported in equilibrium:

(vs(m),vr(m)) € V forall m € u([0,1]).

C7. There is no creation of money:

v

Ts + TR 0;
ts(m)+tgr (m) > Oforallm € u([0,1]);

Ts (m) 4+ Tg (m) > Oforallm € u([0,1]).

Proof of Lemma 1. We have already shown that the set of equilibrium payoffs is the sim-
plex V defined by (1). In any optimal equilibrium, continuation is optimal: (i) vg(m) +
vgr (m) = v for all 0, and (ii) money is not burned, that is, the constraints of Condition C7
hold with equality. Otherwise, one could (i) increase vg(m) without violating Condition
C6, and (ii) decrease transfers 1z, tg (m), and Tg (m), thereby relaxing the constraints of
Conditions C1-C5 and increasing joint payoff vg + vg.

An optimal equilibrium ¢ with zero first-period ex-ante transfers clearly exists. Let
(vs, vRr) be the payoff vector under o. We will modify ¢ to construct an optimal stationary
equilibrium with the same payoff vector. Let j(6), p(m), t;(m), Ti(m), and v;(m), for each
i € {S,R}, be the message rule, decision rule, transfer rules, and continuation payoff
function in the first period on the equilibrium path of ¢. Define T;" (m) by

—(1=90) T} (m) + 6v; = —(1 —6)T;(m) + bv;(m).

Consider the following stationary strategy profile o,. On the equilibrium path, (),
p(m), ; = 0, tj(m), and T;(m) are played in each period. Following any deviation,
except for an undetectable deviation by the sender as in Condition C2(a), play proceeds
according to . By construction, the sender’s and receiver’s expected payoffs under o
are the same as under .

We now show that o, constitutes an equilibrium. In each period the constraints of
Conditions C1 — C5 continue to hold under o because they are identical to the first-period
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constraints under o, as —(1 — 8)T;*(m) + dv; replaces — (1 — 8)T;(m) + 6v;(m). Condition
C6 holds because (vgs, vg) belongs to V by supposition. Further, since vs + vg = vg (m) +
vg (m) = v and Ts(m) + Tr(m) = 0 by optimality of o, we have T¢ (m) + Tj (m) = 0, so
Condition C7 holds.

Finally, by modifying the first-period ex-ante transfer in o, from 0 to 7; = (v; —

A

0;)/(1—9) fori € {S, R}, we can support any equilibrium payoff vector (ds,9g) € V. O
Lemma 3. If0 < § < 6 < 1, then the corresponding equilibrium payoff sets satisfy V. C V.

Proof. Given 6 € [0,1), consider a stationary optimal equilibrium o, with zero ex-ante
transfers. Let this equilibrium produce an equilibrium payoff vector (vg, vy ), with v§ +
vy = 0. We can support any equilibrium payoff vector (vs,vg) € V by modifying the
first-period ex-ante transfer in o, from 0 to 7; = (v; —v;)/(1 —¢) for each i € {S,R}.
Notice that Conditions C1 — C7 continue to hold under 6 € (4,1), after replacing 7; =
(vf —v;)/(1 = 6) with £ = (v} — v;)/(1 — ), because

6 5

(0F — ;) >
1_5(’01 Ql)_l—é

(vf —v;) foreachi € {S, R}.

Therefore, the set V is self-generating under , which proves that V C V (see, for example,
Mailath and Samuelson 2006). [

Appendix B Equilibrium

Proof of Proposition 1. Consider a stationary equilibrium ¢ that produces a joint payoff v.
Let u(0), p(m), 7, ti(m), and T;(m), for i € {S, R}, be the message rule, decision rule, and
transfer rules on the equilibrium path of . Define Us(6) as the one-period payoff of the
sender if the state is 6,

Us(0) = us(p(u(0)),0) — p(0),

where p(6) is the net one-period transfer of the sender if the state is 6,

p(0) = 15+ ts(p(6)) + Ts(u(6)).
Condition C2 (a) requires that

Us(0) > us(p(p(6)),0) — p(6) forall 6,6 € [0,1].
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Since 9%us(d,0)/9do0 > 0 by Assumption 1, this inequality holds if and only if p(x(9)) is

nondecreasing in 6 and

Us(0) = Us(0) + 09 aa%(p(,u(@)),é)dé for all 6 € [0,1], (24)
by Proposition 1 of Rochet (1987) and Corollary 1 of Milgrom and Segal (2002).

Adding the constraint of Condition C4 (a) and the sender’s constraint of Condition
C5, and taking into account that Ts(m) + Tr(m) > 0 and vs + vgr = v, gives (3).

Conversely, suppose that 3(0) and p(m) are such that p(u(6)) is nondecreasing in 60
and (3) holds. We construct transfer rules and punishment variables that satisfy Con-
ditions C1 — C7, and thus constitute a stationary equilibrium. We consider the case
0 > 0; the case § = 0 is simpler but slightly different. Let Ts(m) = Tr(m) = 0 and
Ts = —Tr = E[us(p(u(0)),0) — ts(u(0))] — vs. Moreover, let ts(m) and mP be defined by
(4) and (5), and let d¥ = p(mPF).

Equation (5) assumes that ts(m”) = inf,,c,,((01)) ts(m) for some message m? € u([0,1]).
If this assumption does not hold, then we specify m? and d” as follows. By the Bolzano-
Weierstrass theorem, there exists a sequence {m;} € u([0,1]) suchthatask — oo, tg(my) —
infe (o)) ts(m), 0(my) — 6, and p(my) — dy for some 0(my) € my, 0, € [0,1], and
d, € R. Set mP = 6, and dP = d,. Since ug(d,0) is continuous, and (3) holds for all
(my, p(my)), it also holds for (m?, dP).

Notice that the lefthand side of (3) is nonnegative, so v > vg 4 vi. The constraints of
Condition C7 hold with equality. Condition C6 holds because the continuation payoffs
are vg = vg and vg = v — vg. Condition C5 holds because Condition Cé6 holds and
Ts(m) = Tr(m) = 0. The sender’s constraint of Condition C1 holds with equality. The
receiver’s constraint of Condition C1 holds because it can be simplified to v > vg + vjy.
Condition C2 (a) holds because p((6)) is nondecreasing in 6 and (24) holds. Condition
C2 (b) holds because by deviating to a message-transfer pair (7, fs) that is not observed
on the equilibrium path, the sender induces d? = p (m”), which he can induce more
cheaply on the equilibrium path with message m” and zero interim transfer tg (m?) =
0. This argument assumes that there exists m” such that ts(mf) = infy, o1 ts(m).
Condition C2 (b) still holds even if such m” does not exist. This is because Condition C2
(a) holds for each § = 6(my), and thus in the limit k — oco. But in this limit, Condition
C2 (a) coincides with Condition C2 (b). Condition C4 is a restatement of (3). Note that,
as for Condition C2 (b), a limiting argument needs to be made for Condition C4 (b) if
inf,,c,(j0,1]) ts(m) is not attained by any mP. Condition C3 holds because Condition C4
holds and tg(m) is nonpositive. O
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Proof of Proposition 2. By Lemma 1 and Proposition 1, in an optimal equilibrium, the deci-
sion and message rules solve

o= maxE[u(p(4(6)),0) )
subject to p(p(6)) is nondecreasing in 6, (26)
w(p(m),m) < L(v) for all m € u([0,1]). (27)

Without loss of generality, we can restrict attention to monotone message rules. The
argument is similar to the revelation principle. To this end, consider any yu and p that
satisfy (26) and (27). Define new rules ji and g as ji(8) = {0 : p(u(0)) = p(u(9))} for all
€ [0,1] and p(rir) = p(u(f(1m))) for all 7ir € fi([0,1]), where §(si) is an arbitrary state
0 € m. It is easy to see that d(ii1) is independent of the choice of a representative state
0 € i and that p(fi(0)) = p(u(0)) for all € [0,1]. Since p(u(8)) is nondecreasing in
6 by (26), p(ji(0)) is also nondecreasing in 0 and fi is monotone. Moreover, since each

[N Y]

set 11 € fi([0,1]) is the union of some disjoint sets m € 1([0,1]) and the constraint (27)
holds for p(m) for each m € u([0,1]), the constraint (27) also holds for p(si1) for each
i e ([0,1)).

Consider a relaxed problem

o = max E[u(p(1(9)), 0)

subject to i is monotone,

w(p(m),m) < L(v) for all m € u([0,1]).

We can solve this relaxed problem in two steps. First, for a given monotone message
rule y, the optimal decision rule is given by p. defined by (6). Second, given the optimal
decision rule p., the optimal message rule is clearly p. defined by (8). To prove that the
solution p, and . to the relaxed problem are the actual optimal decision and message
rules that solve the problem (25), it remains to show that p.(m) is nondecreasing in m.
We first rewrite the constraint of the problem (6) as d € D(m) where D(m) is non-
decreasing in m in the strong set order. Since ug(d,0) is strictly concave in d and has
a unique maximum, w(d, m) is strictly convex in d and has a unique minimum. Taking
into account that w(pg(m),m) = 0 and L(D) > 0, we have that the set of decisions d that
satisfy the constraint of the problem (6) is a nonempty closed convex set and thus can be
written as D(m) = [p—(m), p+(m)], where p_(m) and p, (m) satisfy the constraint with
equality. Moreover, since ug(d, 0) is concave in d and is supermodular, w(d, m) is nonin-
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creasing in d and nondecreasing in m if d < pgr(m), and w(d, m) is nondecreasing in d and
nonincreasing in m if d > pgr(m). This implies that p_ (m) and p (m) are nondecreasing
in m, and thus D(m) is nondecreasing in m. Taking into account that u(d, m) is strictly
concave and has increasing differences, p.(m) = arg max e p(,) #(d, m) is nondecreasing
in m, as follows, for example, from Theorem 4 of Milgrom and Shannon (1994). O

Proof of Proposition 3. By Proposition 2, 7 = E[u.(p«(u«(60)),0)].

A receiver’s worst equilibrium with zero first-period ex-ante transfers (ts = g = 0)
clearly exists. Let u(0), tr(m), p(m), Tr(m), and vg(m) be used in the first period of such
an equilibrium. Thus,

E[(1—6)[ur(o(u(0)), 1(0)) — tr(1(8)) — Tr(p(6))] + dvr(p(6))]
> E[(1—0)ur(or(#(0)),u(0)) + dvg]
> (1=0)ur(pr([0,1]),[0,1]) + duvg,

URr

where the equality follows from g = 0, the first inequality follows from Condition C3,
and the last inequality follows from the definition of pg. Rearranging gives

or = ur(pr([0,1]),[0,1]).

Similarly, a sender’s worst equilibrium with zero first-period ex-ante transfers exists.
Let u(0), ts(m), p(m), Ts(m), vs(m), d¥, and m” be used in the first period of such an
equilibrium. Define Vs(0) as the expected payoff of the sender if the first-period state is 0,

Vs(6) = (1= 38)us(p(p(6)),0) — p(6),
where p(0) = (1 - 6)[ts(1(0)) + Ts(p(0))] — dvs(u(6))-

Condition C2 (a) requires that
Vs(0) > (1—0)us(p(u(8)),0) — p(f) forall 8,0 € [0,1]. (28)
As explained in the proof of Proposition 1, this inequality holds if and only if

p(u(0)) is nondecreasing in 6, (29)

0
S (p((@)), 0)d0 for all 0 € [0,1] (30)
0

Condition C2 (b), the constraint of Condition C4 (a) and the sender’s constraint of Condi-

Vs(0) = Vs(0) + (1-5)
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tion C5, and the constraint of Condition C4 (b), respectively imply that

Vs(0) > (1 —96)ug(d?,0) + dvg forall 6 € [0,1], (31)
w(p(m),m) < L(v) for allm € u([0,1]), (32)
w(d?, mP) < L(9D). (33)

Thus, vg is greater or equal than the value of the following problem

min [E [Vs(6
o, [Vs(6)] 34)
subject to (29) — (33).

Claim 1. There exists an optimal solution to the problem (34) such that m* € u([0,1]), d¥ =
p(mP), and (31) holds with equality for 6 € mP.

Proof. Given p and y that satisfy (29) and (32), define the function

o(m) 5y, o
o) = us(p(m), 0m)) — [ S (p((8)),8)a8 )

where 6(m) € m. Define

m, € arg min h(m) and 6, € m,.
meu([0,1])

Hereafter, we assume that the infimum of & is attained. If the infimum is not attained by
any m,, a limiting argument, as in the proof of Proposition 1, needs to be made. It is easy
to see that u, p, mP = m,, 0 = 0,, dP = p(mF), and

0 u o
Vs(6) = (1-9) <us<p<mp>,ep> + %:m(u(e)),e)de) téus ()

constitute a feasible solution to the problem (34). In particular, (36) clearly satisfies (30),
and (31) holds because

Vs(0) = (1—0) (us(p(u(0)),0) — (h(u(0)) — h(mF))) + dug
> (1—=6)us(p(m?),0) + éug,

where the equality follows from (35) and (36), and the inequality follows from (28) evalu-
ated at § = 0,, where (28) holds because (29) and (30) hold.
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Suppose for contradiction that there does not exist an optimal solution to (34) with the
stated properties. Thus, in an optimal solution, d¥ ¢ p(1([0,1])) and

us(p(p(0)),0) — (h(p(0)) — h(my)) > ug(d”,0) forall 6 € [0,1]. (37)

There are two cases to consider: d¥ € (p(1(0)), p(1(1)) \ p(u([0,1])) and d” < p(u(0))
(the case dP > p(u(1)) is analogous).

Suppose that d” € (o(1(0)), 0(1(1))) \ p(#([0,1])). Then there exists € (0,1) such
that d? € (o(u(8—)), o(1(6+)). By continuity of ug and Vs, we have

A A

us(p(p(0-)),0) = (h(p(6-)) — h(m.)) = us(p(p(6+)),0) — (h(pu(6+)) — h(m.)).

Since ug(d, 0) is strictly concave in d by Assumption 1 and /(m) is minimized at m,, this
equality is incompatible with (37) evaluated at §—, leading to a contradiction.

Suppose that d¥ < p(u(0)). The optimal Vs is such that (31) holds with equality for
some 0,

min (Vs(0) — (1 —6)us(d?,0)) = dus,
6€[0,1]

which can be rewritten using (30) as

-0) min [ (%5 o(u0))6) - 02,80 ) 8 = (1~ 0)us(a?,0) + 5 - V(0).
9cf01] Jo \ 06

Since 9%us(d,0)/9do0 > 0 and p((0)) > dP, the minimum is achieved at § = 0. More-
over, (37) implies that ug(d?,0) < ug(p(¢(0)),0). Therefore, ugs(p—(0),0) < ug(d”,0)
because p_(0) < d? by (33), d¥ < p(u(0)) by supposition, and ug is strictly concave in
d. So an optimal d” < p(u(0)) must be given by p_(0) to minimize Vs(0), and thus Vs.
But then we can modify y and p only in that y separates 8 = 0 and p(u(0)) is replaced
with p_(0). Under this modification, we can support the same Vs given by (30) with
Vs(0) = (1 —6)us(p—(0),0) + dvg, leading to a contradiction. O

Claim 1, together with (36), implies that vg is greater or equal than

0 aus

% wtu) | |

subject to p(p(0)) is nondecreasing in 6,

w(p(m),m) < L(v) for all m € u([0,1]).

Elgnp {us(P(V(f’”)),f?”) +E

(38)
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Claim 2. There exists an optimal solution to the problem (38) that solves the problem (9).

Proof. Consider an optimal solution (., p, 67) to (38). Without loss of generality,

mP = u(0F) = {0: p(u(0)) = p(u(6¥))},

otherwise we can modify the message and decision rules such that all states in {6 :
p(u(6)) = p(u(6¥))} are pooled, the same decision p(u(0)) is induced for all 0, the con-
straints of (38) hold, and the value of (38) remains the same. Moreover,

o(1(6)) = p—((9)), ffu(9)>m", (39)
p+(p(0)), if u(6) <m?,

otherwise we can decrease the value of (38) without violating the constraints either by
decreasing p(u(0)) for u(6) > mP or by increasing p(u(0)) for p(8) < mP.

Finally, suppose for contradiction that p(mP) € (o—(m*), p+(m?)). If 0, = supmP < 1,
then some states adjacent to m” from above, say (5*,5* + ¢), must be pooled, otherwise
we can decrease the value of (38) by pooling states (6,0, + ¢) and mP and inducing the
same decision p(m?). Similarly, if 8, = infm” > 0, then some states adjacent to m”
from below, say (8, — ¢, 6, ), must be pooled. Notice that the objective function in (38) is
concave in p(m”); so we can decrease the value of (38) by either decreasing or increasing
p(mP), leading to a contradiction. O

It remains to show that a single-period punishment strategy profile from Proposition 3

can be supported in an equilibrium using the ex-ante transfers 7, 75, T given by

Ty = Ts = Blus (0 (4«(0)), 0) — to(p=(6))] — s,
(1= 0)[Tr + E[ur(0«(p:(6)),0) + to (4« (0))]] + (0 — vs) = -

The constraints of Condition C7 hold with equality. Condition C6 holds because the con-
tinuation payoffs are vg(m) = vg and vr(m) = U — vg. Condition C5 holds because
Condition C6 holds and Ts(m) = Tr(m) = 0. The sender’s (receiver’s) constraint of Con-
dition C1 holds with equality for 7, = T (for 7). The receiver’s (sender’s) constraint of
Condition C1 holds for 7, = T (for 7g) because it can be simplified to 7 > vg + vi. Con-
dition C2 (a) holds because P, (E],(G)) is nondecreasing in 6 and t; satisfies (4). Condition
C2 (b) holds because by deviating to a message-transfer pair (17, t) that is not observed on
the equilibrium path, the sender induces dp = (m ) which he can induce more cheaply
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on the equilibrium path with message m;’ and zero interim transfer t; (m]p ) = 0, as re-
quired by (5). Condition C4 (a) holds because w(p.(m),m) < L(v) for all m € E]’([O' 1]).

Condition C4 (b) holds because Condition C4 (a) holds and df =P, (mf). Condition C3
holds because Condition C4 holds and t;(m) is nonpositive. O

Appendix C Monotone Persuasion

Proof of Lemma 2. Since u,(6) is twice continuously differentiable in 6 almost everywhere,

we can integrate by parts twice and write the expected joint payoff as

1

[ 0 0)iGo(@) = 1. 0)Go )}~ [ . 0)Gr0)a0
0 0
1
= w (OGO — . O)Tp(O)]} + | (O (E)de
=i (1) ()1~ Ko + [ 0T o)t o)

where the last equality follows from

Ip(1) = /01 Gp(6)d0 = 6Gp(0)[} — /01 0dGp(0) = 1 — E[6).

Since only the last term of (40) depends on P, the proposition follows. O
Lemma 4. For all open P C [0,1],

1. Tp(0) is convex in 6.

2. Tppq)(0) <Tp(0) < T(0) forall 6 € [0,1].

3. T'p(0) =T(0) ifand only if 0 & P.
Proof. Part 1 holds because I'p(6) = fog Gp(0)df and Gp(9) is a (non-decreasing) distribu-
tion function. For Parts 2 and 3, we first show that

/  Go(8)d = Tp(0) < T (0) = / " F@)ddforall o < [0,1), (41)
0 0

with equality if and only if 6 ¢ P. It is sufficient to observe that for each disjoint interval
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(&;,C;) of P, we have

0 0
/é Gr(8)d8 = F(&)(6— &) < [ F@)ddfore & (&, EIBI(E 2],
o .S
Gp(6)dd = F ) > | F(@)dd for o  [E[B](¢:, 20120,
0 0

Gi L G
[ Gr(8)a8 = F(&) (EIBI(&i, )] — &) + F() (& — ElBI(&, ) = [ F(@)as,

where each line holds, respectively, because
F(¢i) < F(0) for 0 € (i, E[0](Gi, Gi)]),
F(¢i) > F(0) for 6 € [E[6](¢:, Ci)], Ci),
g
| F@ie = rejelf - /: 0aF(8) = F(5)G — F(&)& — (F(G) — F(&)E[I (&, 2.

i i

Similarly, the remainder of part 2 that I'j 4 (6) < I'p(0) for all 6 € [0, 1] follows from

0 0
/ Gio.(0)df < / Gp(8)dd for 0 € (0,[0]),
0 0

1 1
Gio.(0)d6 > /9 Gp(6)dd for 6 < [E[6],1),

where each line holds, respectively, because
p(0) for 0 € (0,[E[6]),

G
Gp(0) for 6 € [E[0],1),

1 1
/ Gp(0)do = 6Gp(6)); —/ 0dGp(0) = 1 — E[6].
0 0

Lemma 5. P, = @ ifand only if u!/(6) > 0 for almost all 6 € [0,1].

Proof. The lemma follows from (12) and Lemma 4. In particular, if u/ (6) < 0 for 6 in some
nonempty interval (¢, (), then I'zy(0) < Tp(0) for 6 € (¢,¢) and T'g7)(0) = T'p(0) for
0 & (¢,0);s0 Py # @. O

Proof of Proposition 4. By Lemma 4, for any open P C [0, 1], we have I'jg1;(6%) < T'p(6") <
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Ia(6)

I0,1)(6)
— Tp(6)
— Tp(6)

& é 1‘

¢ & %
@ y" > Ty (6") (b) y- = Toqy(6")

Figure 6: Optimal pooling set P, = [0, 6%)
T[p(0"). Fix a value y™ € [[(g1(6"), T (6")]. Define (see Figure 6)
0L = min{6 < [6%,1] : F[Ole)(GL) =yL}

We first show that P, = [0,6%) uniquely solves a constrained problem (12) subject to the
additional constraint that Tp(0%) = y’.

By Lemma 4, for any open P C [0, 1] such that Tp(0L) = y*, we have I'p(6) is convex
in 0 and T')(0) < I'p(0) < Tp(0) forall & € [0,1]. It is easy to verify (see Figure 6)
that for any such I'p, we have I'p, (9) < T'p(0) for 0 < 6% and I'p_(8) > I'p(6) for 6 > L.
Moreover, at least one of the two inequalities is strict for an open interval of 6 if P # P..
Since u”(8) < 0 for 8 < 6% and u”(6) > 0 for 8 > 0L, the set P. uniquely solves the
constrained problem.

The expected payoff under P, is
1

v, = / 1 1,(8)dGp, (0) = F(6L)u, (mL) + / 1, (8)dE(6).
0 oL

*

Thus, taking into account that

dm; _ f(6%)

am, _ L L
we have L
dv. I, t (o Ly F1M L L L L
= * x) 9* * 9*
qor = PO (mh) G+ (05 e ) = f (01 (61) )

= £(05) (il (mb)(0F = mb) + u(mb) — u.(6))
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Fo(6) :
T0,1)(6) :
— () :
—— TH(6) :
Pl |
[ ‘ ‘ | |
: ; 0 & d=g o 1°
(a) 0L < 0l (b) 6L = 6H

Figure 7: Optimal pooling set P, given 0L < 61

Since u.(6) is strictly concave in 6 on [0,0%), we have dv../ d@ﬂ%zm > 0 implying that
6L > @L. Further, the necessary first-order condition is dv/ doL = 0if 8L < 1, which
simplifies to (14). By Proposition 3 of Kolotilin (2018), this condition is also sufficient.
Also, if (14) holds, then m% < 8% because u, is convex on (8%, 1]. If (14) does not hold for
any 6L < 1, then dv*/dﬂﬂgizl > 0;s0 0L = 1and mL = E[6] € (0,0%). O

Proof of Proposition 5. Define Y as the set of pairs (yr,yn) € R? such that T'p(6F) = y* and
I'p(6M) = yH for some open P C [0,1]. Fix (y*,y") € Y. We first consider a constrained
problem (12) subject to the two additional constraints that T'p(8%) = y and I'p(6") = yH.

1
D, € arg max / ull (0)T'p(0)do
0
: : (43)

subject to P is an open subset of [0, 1],

Ip(6F) =y and Tp(87) = y'.
Define (see Figure 7)

6L = min{6 < [#%,1] : I’[O,Q)(GL) =y},
0H = max{68 € [0,6"] : 1N (0H) =y},

Claim 3. If 0L < 0H, then P, = [0,6%) U (011, 1] uniquely solves (43).

Proof. By Lemma 4, for any open P C [0,1] such that Tp(6") = yL and I'p(6") = y, we
have I'p(0) is convex in 6 and I'o4(0) < I'p(0) < I'p(0) for all & € [0,1]. It is easy to
verify (see Figure 7) that for any such I'p, we have I'p, (8) < T'p(6) for 6 € [0,6%) U (67,1]
and I'p, (0) > T'p(0) for 6 € (6%,0™). Moreover, at least one of the two inequalities is strict
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R T e 1

(@) T g,y (6M) # yH and Tt )(08) £yt (®) Lgr 1 (M) = y"
Figure 8: Optimal pooling set P, given 6L > 9!
for an open interval of 8 if P # P.. Since u” (8) < 0 for 8 € [0,6%) U (6H,1] and u/(8) > 0
for 0 € (6F,0™), the set P, uniquely solves (43). O
Define (see Figure 8a)

0k, = min{6 € [0,1] : T (g1 (8") = y"},

(44)
0L = max{# € [0,1] : r[o,e)(QH) = yH}.

Note that 6L, < 0F < 91 < gH .

Claim 4. Suppose 6% > 011,
L IfT e g (61) = yH, then P, = [0,6L,) U (6L,, 1] uniquely solves (43).
2. Iff[olgﬂ)(BL) = y&, then P, = [0,08) U (0E,, 1] uniquely solves (43).
3. Otherwise, P, = [0,0%,) U (6L,,0H) U (05, 1] uniquely solves (43).

Proof. The proof of parts 1 and 2 is analogous to the proof of Claim 3 (see Figure 8b).
We now outline the proof of part 3, omitting tedious details. The reader may refer to
Figure 8a for guidance. If 8% > 01 with (y;,yy) € Y, then

yH _ yL
YL+ G —pr (0 = 0L) < To(0) for 0 € [0%,6"). (45)

Taking into account (45), if I' gt ) (6M) # y" and T[o,eg>(9L) # yt with (yr,yg) € Y, then
0L, € [0,0L) and 0. € (0,1]. We can then show, using the definitions (10) and (11) of
Gp and I'p, that T'p(0L) = y* and I'p(67) = y with (yr,yy) € Y if and only if (6L,,6H)
is a disjoint interval in P. By Lemma 4, for any such P, we have I'p«(0) = I'p(6) for 6 €
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u.

o m 6 6" m’ 6" E[61(6;,1)] g mf 1

Figure 9: Optimal pooling set P, = [0,0%) U (6%, 01) u (05, 1]

[0L,,0H ] and Tp«(0) < Tp(0) for 6 € [0,60L,) U (61, 1]. Moreover, the inequality is strict for
an open interval of 8 if P # P,. Since u/(0) < 0for 8 € [0,6L,) U (6H,1]  [0,6%) U (6H,1],
the set P, uniquely solves (43). O

We now consider the original problem (12), without the constraints that [p(0%) = y*

and T'p(67) = yH.
Claim 5. If P, = [0,60%) U (6%, 01) U (61, 1] with 6L < 01 < 1 solves (12), then mM < 0L and
mt > 05 where mM = E[0] (6L, 01)] and mE = E[0|(07,1]].
Proof. To prove this claim, we eliminate one by one the cases (i) m¥ > 0 and mf! > 9%,
(ii) mM < 0L and m!! < 0H, and (iii) mM > 6L and mt > 9",

First, suppose for contradiction that m™ > 0L and m!! > 6H. The expected payoff

under P, is

vy = /01 1.(0)dGp, (0) = s (mE)F(OF) + u (mM)(F(0H) — F(6L)) + u.(mf) (1 — F(6H)),
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where mL = E[0](0,6%)]. Since 6 is interior, it satisfies the following first-order condi-
tion. Taking into account that

dmy _ f(05) H .M dm  fOH) 4 4

206 = F(oH) — Fon) o ™) g = 1 pemy (e %)
we have
do,

J6H = F(OIF) (1 () + ul (md) (02 — ) =, (mlh) = ul (mlT) (01 = mlT)) =0,

which can be rewritten as
1 (m) + 1, (m) (0 — mM) = u (mf) + ul (mi1) (0 — mLD). (46)

Combining (46) with the fact that u, is either strictly concave on (m, 1] or strictly convex

on (mM,0M) and strictly concave on (', 1], we can show (see Figure 9) that

H M
u.(0) > m*—_eu*(miw) + tg_iu*(mf) for 8 € (mM,mi),
mH — mM mH — mM

which, given E[0](6%,1]] € (mM, mIl), implies that

1
/0 10 (0)dG g gy ot 11 (0) = 1 (m")F(67) + u (E[0](65, 1]]) (1 — F(65))

>, (m")F(6;) + . (my) (F(67) — F(65)) + i (m) (1 — F(6,1))

1
:/0 u*(Q)dG[o,%)u(Gi,ﬂf)u(Gfrl](9)'

This leads to the desired contradiction. A symmetric argument eliminates the case m <
0L and m! < 9H.

Finally, suppose for contradiction that m? > 6% and mf > 0. In the subcase 6L >
6L, so that u’/(6) > 0 for 6 € (6%,0), let P = [0,0L) U (6H,1]. Then I'p(8) > Tp, (6)
on the interval (6%,07) and I'p(8) = I'p, () everywhere else; so P, cannot be optimal.
In the subcase 6L < 6L, so that u, is strictly concave on (6%, 6%) and strictly convex on
(6%, 611), an application of Proposition 4 to the interval (6%, 6) implies, for some M €
(6%, 611), that the pooling set (6%, 6M) uniquely solves (12) on the interval (6L, 61). Thus,
P = [0,0L) U (0L, 0M) U (6H,1] produces a strictly higher expected payoff than P,. Both
subcases thus lead to contradiction. O

Claim 6. If P, = [0,0L,) U (6L,,05) U (1L, 1] solves (12), and if (44) holds with y* = Tp_(0L)
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and yH = Tp (0H), then 6L, = 0 and 6 =1,

Proof. Suppose for contradiction that 81 < 1. Define mM = E[6|(6L,,0F)] and ml =
E[0](0E,1]]. Then 67 < 0H < mil < 1. It is also easy to verify (see Figure 9) that
mM € [0%,0"] by definition of 6L, and 6 and given that 8 < 1. But this contradicts
Claim 5; thus 8. = 1. A symmetric argument shows that 6%, = 0. O

Combining Claims 3 — 6, we conclude that P* takes one of three forms: [0, 6%L) U (65, 1]
with 08 < 0L < 0 < 0H, or [0,0M) U (6M,1] with M € (0,1), or [0, 1].

By Proposition 3 of Kolotilin (2018), P = [0,6%) U (6H,1] with 6% < 6L < T < ¢!
is optimal if and only if the first-order conditions (16) and (17) hold. Also, if (16) and
(17) hold, then mL < 6F and mf > 6H because u, is convex on (9%,0); so part 1 of the
proposition follows. If such L and 01 do not exist, then P, takes one of the two remaining
forms: either [0,1] or [0,6M) U (6M,1] with M € (0,1). Clearly, P = [0, 1] is not optimal
if and only if (19) holds for some 82 € (0,1). Moreover, P = [0,6M) U (6M,1] is optimal
only if the first-order condition (18) holds. Finally, if P = [0, oMy U (0M,1] is optimal, then
mb < 8L and m!’ > 6 by Claim 5. So, parts 2 and 3 of the proposition follow. O

Appendix D Quadratic Payoffs

Lemma 6. Under Assumption 3,
1. u.(0) is continuously differentiable in 0 for all 6 € [0,1];
2. u.(0) is twice continuously differentiable in 6 for almost all 6 € [0,1].
Proof. From (20), we have
pr(0) + ¢, if prp(6) — pr(0) > £,

p«(0) = S prp(0),  if |orp(8) — pr(0)] < ¢, 47)
or(0) — €, if prp(6) — pr(6) < 2,

and thus

6 — {m{(ex i [0r(6) — pr(0)| > ¢, )

o |
orp(0), if |ore(8) — pr(0)] < L.
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Further, u.(0) is continuously differentiable in 6 for all 6 € [0, 1], with

u,(0) = (49)

>
~

prp(0)p+(0), if |orp(6) — or(

{P%B(G)p*(ﬂ) + (prB(0) — 04(0))0%(0), if |orp(0) — pr(0)] # £,

Finally, since p. () is twice continuously differentiable in 6 everywhere except at most
two states where |prp(0) — pr(6)| = ¢, it follows that u.(0) is twice continuously differ-
entiable everywhere except at most these two states, with

uy (0) = (20r5(8) — p%(6))0%(0) if [opp(0) — pr(0)] # L. (50)
[

Proof of Corollary 2. From (48) and (50), u/(6) < 0 for some 6 € [0,1] if and only if
lorB(8) — pr(0)| > £ and p%(8) > 20%5(0). In this case, u/(6) < 0 in some open interval,
because 1!/ () is continuous in 0 almost everywhere. Lemma 5 completes the proof. [

Lemma 7. If the receiver is over-responsive, { is strictly increasing in 6.

Proof. If 6 = 0, then u!/(6) < 0 for all @ € [0,1]. By Lemmas 2 and 4, the expected joint
payoff is strictly higher under P = [0, 1] than under P = @. Thus, Lemma 3 implies that
U —vg — vg > 0and £ is strictly increasing in ¢ for all § € [0,1). O

Proof of Proposition 6. By Lemma 5, P, = @ if § € (64,1),and P, = [0,1] if 6 € (0,6P). By
Proposition 4, P, = [0,0%) for some 6L € (6%, 1] if § € (68,54).
Differentiating (42) with respect to ¢ yields

o, ooy (dul(ml) o g du(m))
dlder = f(05) (d—£(9* —my) + T)

= F(0F) ((ofp(mE) = pl. (b)) (0 — mk) + (ppn(mk) — p.(m1)))

< £(65) ((ofp(mk) — pl(mb)) (68 — mb) + (prw(mb) — p.(mb))) =0,
where the inequality holds because 0% > 0 and plz(mk) < pl(ml), and the last equality
holds because prg(0) = p«(8F) and prp(8) — p«(6) is linear in 6 for 6 € (0,0%). So 0L is
nonincreasing in ¢, and doL/de < 0if 6L < 1, as follows, for example, from Theorem 1

of Edlin and Shannon (1998). Further, at § = 6%, we have 0% = 1 and (42) implies that
dv, /doL ‘eLzl > 0. Therefore, 6L reaches 1 at 68 > 6B. O]
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Corollary 3. Suppose the receiver is over-responsive, and X = [0,0%) for some 6* € (0,1).
Keeping 6%, ¢, and pg constant, 6L is strictly decreasing in « = pl5(0) if 0L < 1. Moreover,
0L — 0L asa — 1/2.

Proof. Notice that prp(6) = a(6 — %) + pr(6%) for all 6 € [0,1]. By the same argument as
in the proof of Proposition 6, we have d6L /dx < 0 if 8L < 1 because

d*v, _ (gL dul (m%) .1 py  du(6) | dus(ml)
dadeg_f(g*)( P ) e e )

= F(OF) (o (mk) + (mk — 01)) (65 — mk) — (0 — "), (6F) + (mk — "), (m) )
= —£(65) ((0+(6) — pu(mb)) (6% — 61 + (6% — mb) (6% — mt)) <0,

where the inequality holds because each term in the parentheses is positive. Finally, if
& — 1/2, then u”(9) — 0 for 6 € (0,0") and thus dv./db%|,_,. — 0by (42), implying
that 0L — 6L, O

Proof of Proposition 7. By Lemma 5, P, = @ if § € (64,1). By Proposition 4, P, = [0,6%)
for some 0L € (8F,1] if § € (6B,64). Further, by Proposition 6, d8L/ds < 0if 6L < 1. If 6%
reaches 1 at 6% > 65, then P, = [0, 1] remains optimal for § € [0,4%) as follows from the
following claim.

Claim 7. If P, = [0,1] solves (12) at 6 € (0,1), then P, = [0,1] solves (12) at § € [0, 6).

Proof. Using (12), (48), and (50), we obtain that, for any open set P C [0, 1],

- /eeX(l —20%5(60))(Tp(8) —To11(6))d6 +/ (0Fp(0))*(Tp(8) — T (g11(6))db

02X

< - / (1 —20F5(6))(Tp(0) — T (6))d6 ‘|‘/ (0F5(6))*(Tp(8) — Tpg.11(6))d6 < 0,
feX 0¢X
where the first inequality holds because 1 > 2p}5(0) = 2a for an over-responsive receiver,
I'p(6) > Ty (0) forall @ € [0,1], and X C X for & > 4, and the second inequality holds
because P, = [0, 1] solves (12) at é. O

Suppose now that 8 < 1 at § = 6B. For § < J3, the set X consists of two disjoint
intervals [0,0") and (6%, 1]. At = 68, we have that 6L < 1 satisfies (16) and 8 = 91 =1
satisfies (17). By continuity, there exist 6L < 6 that satisfy (16) and (17) for J in some left
neighbourhood (8¢, 68) of 6; so, by Proposition 5, P, = [0,0%) U (62, 1] with 6L < 6! is
optimal for 6 € (65, 68). Moreover, by the same argument as in the proof of Propostion 6,
doL/ds < 0and doH /ds > 0if 6L < 0I1. Thus, at 6 = 6¢, the optimal thresholds 6% and
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6 coincide. Notice that 6 > 0, because at § = 0 the left hand sides of (16) and (17)
evaluated at 1 = 017 = ¢, are strictly higher than the right hand sides of (16) and (17), by
strict concavity of u,(0) in 8 on X = [0, 6y) U (6, 1].

For 6 < 6, there do not exist thresholds 8L < 6! that satisfy (16) and (17); so, by
Proposition 5, P, is either [0,1] or [0,6%,) U (6%, 1]. By Claim 7, there exists 62 € [0, 5]
such that P, = [0,03,) U (6%, 1] for 6 € (62,6C) and P, = [0,1] for § € (0,6P). It remains
to show that 62 € (0,6%). Notice that 6P < ¢, because at 6 = ¢S, the set P, = [0,6L) U
(61,1] with 6L = 6H, which satisfy (16) and (17), yields a strictly higher expected joint
payoff than P = [0, 1], as follows from

1
/0 1 (8)dG 1y t11)(8) = 0, (mE)E(OL) + . (i) (1 — F(6H))
1
> u, (E[6]) = /O 1. (0)dGo. (6),

where the inequality follows from E[6] € (mL, m!), (16) and (17).

It remains to show that 62 > 0. By Proposition 5, if [0,6%,) U (63, 1] with 61 € (0,1)
is optimal at &, then 0M satisfies (18). It is easy to see that there is no solution 8 to (18)
such that 0™ — 0 or M — 1 as§ — 0, because u/(0) and u/,(1) are finite and . (9) is
strictly concave in 6 on [0, 1] at 6 = 0. Moreover, by Lemmas 2 and 4, P, = [0, 1] uniquely
solves (12) at § = 0. It follows by continuity that 62 > 0. O

Proof of Proposition 8. In the case ¢ > (4, there are no extreme states; so, by Corollary 2,
the optimal pooling set P, is empty. Thus, this case holds.

In the case ¢ € (¢8,¢4), there are low extreme states (" > 0) but there are no high
extreme states. It is straightforward to show that (14) of Proposition 4 is equivalent to
0L = (B — £). Further, we can show that 6L is decreasing in ¢, and (given our assumption
that a + /1 —2a/4+ B < 1) that 6L < 1 when ¢ = /8. Thus, this case holds.

In the case £ < (B, there are low and high extreme states (0 < 0L < 8 < 1). Itis
straightforward to show that (16) and (17) of Proposition 5 are respectively equivalent to
0L = y(B—¢) and 65 =1 — (1 — ¢ — & — B). The conditions from Part 1 of Proposition
5 are satisfied if L < 6, which is equivalent to £ > (<. Thus, the case £ € (¢S, ¢8) holds.

Now, consider the case ¢ < ¢$. By Proposition 7 and Lemma 7, there exists /2 € (0, £%)
such that P, = [0,1] if £ € [0,/P) and P, = [0,6M) U (6M,1] for some 61 € (0,1) if
0 € (4P, 4%). 1f P, = [0,6M) U (M, 1], then Proposition 5 implies that 6 /2 € (0,6%) and
(6M +1)/2 € (6M,1), and thus that the expected joint payoff under such P, is
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oM 1
/0* u. (% +40) d9+/9Mu* (55— ¢0) do.

Maximization of this expression yields

oM _ 1—2x — 1648
O 2(1-80(1—a) —2a)

Further, at the threshold ¢ = ¢, the pooling sets [0,6M) U (6M, 1] and [0, 1] yield equal
joint expected payoffs:

[T (0o [ (2 e)ao= [Nu (o (3).0) o

(51)
with oM = 20 1—;62’;(1_—1?5)55 %) and p. <%> = min {% +B, 5+ Ef} :
Givena < 1/2and & + /1 —2a/4 + B < 1, we can calculate using (51) that
ED:{% if a4 p < 3/4,
’ By if a+B>3/4
The cases £ € (¢2,¢$) and ¢ € [0, ¢P) follow immediately. O

For completeness, we also state the optimal pooling set for values of x and f where

separation in the middle with pooling on both sides never occurs.

Proposition 8. Suppose « < 1/2, a/2+ B > 1/2, and a« + /1 —2a/4+ B > 1. Then the
optimal pooling set is

2, iFl € (¢4,00)
Py = 4 [0,6L) where 6L = (B — 1), if ¢ € (¢£8,¢2),
[0,1], if € [0, ().
and where
224+ V1 —2x —2a) A g V1—2u«
v = 3 6a 1 42 and 0 = B and E*—T (1—a—p).

Proof. The cases ¢ € (¢2,00) and ¢ € (¢B,¢2) follow a similar argument to that of the

corresponding cases from Proposition 8. At ¢ = (5, it is straightforward to calculate that
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6£ = 1, and that there are low extreme states but there are no high extreme states. Thus,
by Proposition 7 and Lemma 7, P, = [0,1] for all £ < ¢5. O

Two cases of the uniform-distribution setting are not covered by Propositions 8 and
8'. First, if the receiver is not over-responsive, & > 1/2, then complete pooling is optimal
by Corollary 2. Second, if the sender is downwardly-biased (on average), a/2 + 8 <
1/2, then the solution is symmetric to that of the upwardly-biased (on average) sender.
Specifically, if the optimal pooling set is P, for parameter values («, §), then the optimal

pooling setis P, = {0 :1— 6 € P,} for parameter values (&, ) = (a,1 — B — a).

Proof of Proposition 9. Define 0, = supm? and §, = infm?, where m? solves (9). We first
show by contradiction in each case that if 6, < 1, then p(mf) = mP — ¢ and all states
0 > 0, are separated by y. Suppose that p(m?) € (m? — 0,0, — ¢]. If some states above
0, are pooled, say (61, 92)_, we can decrease the value of (9) by separating these states, as
follows from

0 0
a/ (@—g)déw/ (60— ) dbfor 0 € (81,0,).
01

61

If all states above 0, are separated, we can decrease the value of (9) by pooling states
(64,04 + ¢) and mP, and inducing the same decision p(m"), leading to a contradiction.
Next suppose that p(m”) > 6, — £. Then some states adjacent to 6, from above, say
(8.,0), must be pooled, such that p(m?) < (04 +0) /2 — £. But then we can decrease the
value of (9) by separating states (é_— e, 0), as follows from

0 = A 0 o) A_ ~ — A
a/ (6*+9_£>d9>a/ (M_£>d6for6€(9h9—€)r
o\ 2 A, 2
0 /7 n b—e /7 o _ 0 y B n ~
a/ 0.+0 _, dé>a/ 0, +0-¢ d9+a/ (6—¢)dbfor 6 € (8 —¢,0).
. 2 g, 2 f—e

Analogously, we can show that if §, > 0, then p(m?) = mP + ( and all states 6 < 0,

are separated by y. This implies that either §, = 0 or 0, = 1.

Thus, the sender’s worst equilibrium payoff vg is achieved either by pooling set [0, 8")
and decision rule p(m) = m — £, or by pooling set (8, 1] and decision rule p(m) = m + £.
Computation reveals that the value of (9) under [0,0) and p(m) = m — L is -

v =% (~3(20—0) (4b+20-0)+2a (261 +6°)), (52)
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which is smaller than the value of (9) under (1 —0,1] and p(m) = m + £ for all ¢ € [0,1]
ifa/2+b > 1/2. Moreover, the value of (52) is minimized for 6 € [0, 1] at either § = 0 or

—
o= 1++/1—-8a(b+7) <1

2a !

where the inequality follows from the assumption a/2 + b > 1/2. Further computation
then produces (23). [

Substituting 6" in (52) gives an explicit form expression for v,
& & p p S

Ug :% (a — 3al — 6bl — 362) +

0, ifa(b+10) > 3,
as <1+\/1—8a(b+£)—4a(b+€)(3+2 1—8a(b+«4))), if a(b+¢) < 3.

The case a/2 + b < 1/2, which is not covered by Proposition 9, follows a symmetric
argument. In this case, the sender’s worst equilibrium payoff is achieved by the decision
rule p(m) = m + £ and the pooling set (QH, 1] where

QH:{L if a(l—a—b+10)> 3,
.

Appendix E Transparency

Proof of Proposition 10. Suppose, for the sake of argument, that L(7) defined by (1) takes
the same value under ¢ and §. We will show that the best equilibrium joint payoff is
higher and the worst monotone equilibrium payoffs are smaller under ¢ than under .
Specifically, 7 > 7, &g < vg, and 95 < vg. From (1) it follows that L.(9) > L(7), with strict
inequality if § > 0. The proposition follows easily from this observation.

The best equilibrium joint payoff 7 under ¢ can be supported by an equilibrium in
single-period punishment strategies such that p. (u.(6)) is induced in each period on the
equilibrium path, by application of Proposition 3 to each realization of signal ¢. Since
p«(p«(0)) is nondecreasing in 6 on [0, 1], it can be supported in an equilibrium, without
money burning, under less informative signal i by application of an analogue of Propo-

sition 1 to each realization of signal i; so, ¥ > T.
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By Proposition 3, the receiver’s worst equilibrium payoffs under i and  are

og = E[ur(or(¥(6)),0)] < Elur(or($(8)),0)] = vg,

where the inequality holds because 1 is strictly more informative than .

By a similar argument to the proof of Proposition 3, the sender’s worst equilibrium
payoff under ¢ can be supported by 75 = 0, Ts (m) = 0, and vg (m) = vg; that is, the
sender may refuse to make any ex-ante or ex-post transfers, and the worst punishment
for him would involve zero transfers from the receiver and the worst continuation value.
Let 1 (0) and p (m) be penal message and decision rules that support this equilibrium. By
assumption p(p(6)) is nondecreasing in 6. Then the interim transfer ts(u(6)) is defined
by (4) and (5) given that the set of states is (6) C [0, 1] rather than [0, 1]:

ts(m) = h(m) — mer;%pr(le)) h(m),
0(m) 3y, o (53)
hon) = ws{p(m), 6m)) — [ S p(1(@)),8)a8,

where 0(m) € m. The message and decision rules y(6) and p(m) such that p(p(6)) is
nondecreasing in 0 can be supported in equilibrium under ¢ using the interim transfer
rule f5(m) that differs from ts(m) given by (53) only in that the minimum of & is taken
over m € u({(0)) rather than over m € u(y(6)). Since p(0) C P(0) for all 6 € [0,1] by
the definition of more informative signals, we have fs(u(0)) > ts(u(0)) forall 6 € [0,1],
and thus

A~

0s < Efus(o(u(0)),0) —ts(1(0))] < Elus(o(u(0)),0) —ts(u(0))] =vs,  (54)

which completes the proof. O
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